Abstract:
A method for producing electric energy from solid and liquid fuels is provided. The fuels are first subjected to a gasification process at high pressure, and the scrubbed gasification gas is fed to a gas and steam turbine process. The combustion of the scrubbed gasification gas in the gas turbine chamber does not occur with air, but with a mixture made of the three components oxygen, carbon dioxide and water vapor. As a result, the waste gas of the gas turbine is made only of carbon dioxide and water vapor. After the condensation thereof, technically pure carbon dioxide remains, which can be dissipated by storage in the deep substrate of the atmosphere.
Abstract:
A method and apparatus to batch de-coat the organics in metal scrap, and/or gasify the organics from certain types of waste material (including biomass, municipal solid waste, industrial waste, and sludge). The apparatus is suited for use on a batch tilting single entry rotary furnace of the type used to melt the metal scrap in the aluminum industry. The apparatus uses a burner in the tilting rotary furnace but does not necessarily melt the metal scrap. It preferably operates below the melting temperature of the metal scrap (
Abstract:
A process for the treatment of waste, the process comprising: (i) either (a) a gasification step comprising treating the waste in a gasification unit in the presence of oxygen and steam to produce an offgas and a char, or (b) a pyrolysis step comprising treating the waste in a pyrolysis unit to produce an offgas and a char; and (ii) a plasma treatment step comprising subjecting the offgas and the char to a plasma treatment in a plasma treatment unit in the presence of oxygen and, optionally, steam.
Abstract:
A method and apparatus for providing a steam boiler/combuster and gasifier that uses a primary dirty fuel, such as waste materials, or high-polluting fossil fuels, and a secondary low-polluting fuel, such as biomass fuels for co-generation of electricity while reducing harmful emissions. The primary fuel is burned in the combuster to create steam in the steam boiler. The steam turns a steam turbine thereby powering a first generator. The dirty exhaust from the combuster is scrubbed by a gasifier. The secondary fuel and oxygen are added to the dirty exhaust in the gasifier creating gas and ash. The gas powers an engine that turns a second generator and releases a cleaner exhaust.
Abstract:
A waste treatment system processes waste upon the application of energy. The system includes a vessel that has an open space that receives waste feedstock. At least two plasma electrodes are mounted to the vessel. An electrode movement control system may position the plasma electrodes to facilitate a pryolysis process to treat the waste feedstock.
Abstract:
Disclosed herein is a system for purifying contaminated soil, which restores soil contaminated by a variety of pollutants to the condition before the contamination, and which itself provides the driving source required for the purification. The system includes: a dryer which dries contaminated soil, separates waste gas generated during the drying from the contaminated soil, and discharges the waste gas; a pyrolysis apparatus which indirectly heats the dried contaminated soil in a hermetic condition to divide the contaminated soil into purified soil and pyrolysis gas, and separately discharges the purified soil and the pyrolysis gas; a transfer fan for forcibly transferring the discharged pyrolysis gas; a burner for oxidizing the waste gas discharged from the dryer and the pyrolysis gas forcibly transferred by the transfer fan, to heat the pyrolysis apparatus; and a cooling facility for directly spraying cooling water on the discharged purified soil to cool the purified soil.
Abstract:
An energy self sufficient process for treatment of municipal solid waste includes the production of mixed alcohols. The process also includes gasification of the solid waste producing a gas that can provide either or both electricity and heat to further power the process.
Abstract:
A device for gasifying biomass sludge having particle size less than 1 cm, and 20% to 100% solids content has a primary chamber, a fume transfer vent, a mixing chamber which accepts fumes from the primary chamber, and an afterburner chamber in fluid communication with the mixing chamber. A secondary burner produces an initial heating flame within a vertical portion of the afterburner chamber. A heat transfer chamber is in fluid communication with the afterburner chamber. Heated gases from the afterburner chamber cause heating of the heat transfer chamber. The primary chamber has a heat conductive floor superimposed over the heat transfer chamber so that conductive and convective heating of the primary chamber occur. At least one primary auger is located crosswise in the primary chamber between a sludge feed hopper and an ash hopper. The heat transfer chamber underlies the primary auger near the end at the ash hopper.
Abstract:
A system, method and apparatus for pyrolyzing are disclosed. The system, method and apparatus can include a plurality of chambers which may be loaded with material to be pyrolyzed. The material may then be pyrolyzed to produce a gaseous fuel and any remaining material in any of the plurality of chambers may be removed. The gaseous fuel may be sent to an afterburner where other elements may be added to generate heated gas having a predetermined temperature. The heated gas may be used in any of a variety of devices, such as a heat exchanger or a dryer, and may be used for any of a variety of reasons, such as the generation of heat.
Abstract:
An oil reconversion devices 1a and 1b for waste plastics which thermally crack a waste plastic Ro by heating it and converts a generated cracker gas Gr into oil by cooling it, equipped with a thermal cracking bath 2 which has a bath main body 4 placed inside a coil 3 . . . , induction-heats the bath main body 4 by feeding a high-frequency current through the coil 3 . . . , and thermally cracks at least a molten plastic Rd obtained from the waste plastic Ro to generate the cracker gas Gr, an injection port 5 through which the waste plastic Ro is injected, a feeder 6 which supplies the waste plastic Ro injected through this injection port 5 to the thermal cracking bath 2 via a forced or direct feeding means Ua or Ub without a bath, and an oil conversion processor 7 which cools and converts the cracker gas Gr generated by the thermal cracking bath 2 into oil.