Abstract:
The invention provides a pyrolysis reaction system, the system comprising: a pyrolysis chamber comprising a feed inlet, a gas inlet and a product outlet, wherein the pyrolysis chamber is configured i) to receive a pyrolysable organic feed and an inert gas via the feed inlet and gas inlet respectively, ii) to pyrolyse the organic feed at a pyrolysis temperature to produce a carbonaceous pyrolysis product and a pyrolysis gas, wherein the pyrolysis gas will combine with the inert gas to form a gas mixture having a pyrolysis chamber pressure in the pyrolysis chamber, and iii) to discharge the carbonaceous pyrolysis product via the product outlet; a gas reactor configured to react the pyrolysis gas by combustion and/or carbon deposition at a gas reaction temperature and a gas reactor pressure; and a first partition defining a boundary between the pyrolysis chamber and the gas reactor, the first partition comprising a plurality of first apertures to provide fluid communication between the pyrolysis chamber and the gas reactor, wherein the pyrolysis reaction system is operable with the gas reactor pressure less than the pyrolysis chamber pressure such that the gas mixture flows from the pyrolysis chamber to the gas reactor through the first apertures, thereby providing at least a portion of the pyrolysis gas for reaction in the gas reactor.
Abstract:
A method and apparatus for removing pollutants from organic solid waste by pyrolysis coupled with chemical looping combustion are provided. The apparatus includes: an air reactor, a fuel reactor, and a pyrolysis gasifier. The pyrolysis gasifier is sleeved outside the fuel reactor, and the air reactor is connected with the fuel reactor. A top end of the air reactor is connected with a top delivery pipe; the top delivery pipe is connected with a first cyclone separator; and the first cyclone separator is connected with an oxygen carrier refeeder provided at a top end of the fuel reactor. The apparatus forms a two-stage reaction unit of pyrolysis and chemical looping combustion by decoupling the pyrolysis process from the chemical looping combustion, which avoids the contact between the complex ash of organic solid waste and the oxygen carrier, thereby improving the service life of the oxygen carrier.
Abstract:
The present disclosure is directed to a treatment system for medical and toxic waste. The system comprises two parts, a heterogeneous gasification system, in which syngas is produced from non-homogeneous waste, and a pyrolysis system, in which medical and hazardous waste are pyrolyzed using the syngas produced from the heterogeneous gasification system. The heterogeneous gasification system comprises a gasifier reactor having a reactor zone connected with an ash distillation zone, a re-fueling structure, an open-top water tank that wraps around the entire bottom section of the gasification system, and a gasification-agent supply module having a supply-end connected to the bottom of the gasifier reactor and a demand-end connected to the pyrolysis system. The pyrolysis system comprises a rotatable pyrolysis reactor having a horizontal and hollow cylindrical shape, a pyrolyzed-ash precipitator, which is connected to the pyrolysis reactor zone, and a condenser connected to the pyrolyzed-ash precipitator.
Abstract:
Provided is a plastic waste solid fuel incinerator comprising: an incinerator housing which has, on the upper portion thereof, a gas outlet through which combustion gas is discharged; a fuel supply unit which transfers and supplies a plastic waste solid fuel; a first combustion unit which continuously transfers and burns the supplied plastic waste solid fuel; a first air supply unit which supplies air needed for combustion to the first combustion unit; a combustion gas induction unit which induces the combustion gas generated from the first combustion unit toward the lower portion of a first combustion chamber; a second combustion unit which is arranged in the lower portion of the first combustion unit and comprises a downward injection nozzle unit which downwardly injects the combustion gas supplied through the combustion gas induction unit in order to reburn the combustion gas; and a second air supply unit which is arranged in the lower portion of the second combustion unit and supplies the air needed for combustion to the second combustion unit by downwardly injecting the air. Accordingly, there is an advantage of allowing continuous combustion using combustion gas generated during the combustion of the plastic waste solid fuel without using a separate auxiliary fuel, thereby reducing incineration costs.
Abstract:
A mobile platform comprises a header, a biomass processor, and a guidance system. The header is configured to harvest biomass. The biomass processor is configured to compact the biomass into a multitude of compressed biomass pieces. The guidance system is configured to guide the mobile platform at a speed determined by the operating capacity of the mobile platform.
Abstract:
A system for incinerating bio-hazardous waste includes a chamber having there within a hydrocarbon feedstock and a plurality of electrodes between which an electric arc is formed, producing an arc-based gas. The system includes at least one primary combustion chamber in which an amount of bio-hazardous waste is incinerated. A source of combustion is interfaced to each of the at least one primary combustion chambers, thereby providing heat and ignition to the bio-hazardous waste. A secondary combustion chamber accepts fumes from the at least one primary combustion chamber and combines the fumes with the arc-formed gas and then the fumes mixed with the arc-formed gas are combusted.
Abstract:
Disclosed herein are systems and methods for the conversion of solid organic waste material, such as waste plastics, into fuel for the generation of heat and power. In addition, embodiments of the systems and methods disclosed herein relate to converting solid organic waste material into a gasified material for mixing with an oxidizing gas to allow for clean combustion of the fuel, thereby minimizing emissions of pollutants.
Abstract:
The present invention relates generally to systems and methods for drying and gasifying substances using the calorific value contained in the substances, and it more specifically relates to apparatus and methods for processing wet, pasty, sticky substances, such as municipal wastewater treatment sewage sludge, into a workable, powdered product.
Abstract:
The present disclosure provides a burner for a reduction reactor, the reduction reactor has a reaction space formed therein, wherein each burner has a fuel feeding hole and multiple oxygen feeding holes formed therein, wherein each burner has an elongate combustion space formed at one end of a head portion thereof, the combustion space fluid-communicating with the reaction space of the reactor, wherein the elongate combustion space has a length such that oxygen supplied from the oxygen feeding holes thereto is completely consumed via oxidation or combustion with fuels supplied from the fuel feeding hole thereto only in the elongate combustion space upon igniting the burner.
Abstract:
The present document describes a catalyst to initiate microwave pyrolysis of waste, a process for the microwave pyrolysis of waste using the catalyst, as well as a microwave pyrolysis system.