Abstract:
What is described is a lithographic method for fabricating three-dimensional structures on the micrometric and submicro-metric scale, including the operations of: depositing a layer of a first resist on a substrate; depositing a layer of a second resist on the layer of the first resist; forming a pattern of the second resist by lithography; depositing a further layer of the first resist on the previous layers; and forming a pattern of the first resist by lithography. The second resist is sensitive to exposure to charged particles or to electromagnetic radiation in a different way from the first; in other words, it is transparent to the particles or to the electromagnetic radiation to which the first resist is sensitive, and therefore the processes of exposure and development of the two resists are mutually incompatible to the extent that the exposure and development of one does not interfere with the exposure and development of the other.
Abstract:
An exposure apparatus and method to expose an object with an illumination beam irradiated on a mask from a light source disposes an optical unit between the light source and an optical integrator of an illumination optical system to illuminate the mask with an illumination beam, of which an intensity distribution on a Fourier transform plane with respect to a pattern on the mask has an increased intensity portion apart from the optical axis relative to a portion of the intensity distribution on the optical axis.
Abstract:
In the manufacture of an array total internal reflection hologram for printing a pattern of high-quality microfeatures over a large area, a mask defining just a part of the pattern is used to record an array of sub-holograms, the holographic recording medium or the mask being moved with respect to each other subsequent to the recordal of each sub-hologram, thereby building up a hologram of the complete pattern to be printed.
Abstract:
A method of fabricating a diffraction grating by utilizing a single substrate comprises the steps of forming a photosensitive material layer and a light transmission reducing film having a predetermined pattern integrally with each other on the substrate, exposing the photosensitive material layer by exposure irradiation light via the light transmission reducing film, and developing the photosensitive material layer after exposure. It is composed so that the direction of exposure and the direction of development are opposite to each other. It is possible to fabricate a diffraction grating in which each grating is formed on a predetermined substrate at a predetermined pitch and a root portion in a cross-section of each diffraction grating is constricted. In this way, it is possible to reduce or eliminate interfaces, so that the generation of noise light can be effectively suppressed and a diffraction grating having a high diffraction efficiency can be made.
Abstract:
A projection exposure apparatus consists of: an illumination-optical system, including a light source, for irradiating a mask; a projection optical system for projecting a hyperfine pattern image on a substrate; an optical integrator for illuminating the mask in a homogeneous illuminance distribution; and a luminous flux distributing member for distributing the luminous fluxes from the integrator into two luminous fluxes in two different directions for focusing intensity distributions over the Fourier transform surface or the surface in the vicinity thereof on two portions part from the optical axis of the illumination optical system. An exposure method of exposing the mask patterns onto an exposed member comprises: a step of starting the exposure when setting a movable optical member in a first position; a step of switching the movable optical member from the first position to a second position; a step of shielding the illumination light during the switching process; and a step of finishing the irradiation of the mask with the luminous fluxes when an exposure quantity reaches a preset value.
Abstract:
A processing method comprises:a first step of depositing on a substrate which is a specimen a film of any one of a semiconductor, a metal and an insulator;a second step of subjecting the surface of the film deposited in the first step, to irradiation with a beam having a given energy to produce a physical damage on the surface;a third step of subjecting the film surface on which the physical damage is produced in the second step, to selective irradiation with light to partially cause a photochemical reaction so that a mask pattern depending on the desired device structure is formed on the film surface; anda fourth step of carrying out photoetching using as a shielding member the mask pattern formed in the third step.
Abstract:
The present invention provides a method of constructing trenches for use in microelectronic circuit structures. A photolithographic method is used to create trenches with sloped walls shaping the photoresist masks into sloped profiles. These photoresist masks effectively shape the underlying substrate during subsequent etch steps producing sloped wall trenches. These trenches can be used as shallow trench isolation structures to isolate microelectronic circuit structures from each other.
Abstract:
An optical exposure method in photolithography applied for precise processing when semiconductor devices are produced. A pattern on a photomask is projected and exposed on a register on a base plate with an exposure device including a deformation illumination system, a photomask and a projection lens. The deformation illumination system is composed of a light source, a diaphragm and a condenser lens, and the diaphragm is provided with a linear through-hole. The optical exposure method uses a ray of linear light for illumination or two rays of linear light for illumination that are parallel with the pattern. The two rays of linear light are symmetrical with respect to an optical axis. These rays are parallel with the pattern in a position separate from the optical axis of the exposure device when the photomask pattern is a line and space pattern.
Abstract:
This specification discloses a method of and an apparatus for manufacturing a disc medium which utilize the projection exposure technique of a stopper for lithography, rotate a circular photosensitive substrate which provides the disc medium at the same speed as a circular reticle having a pattern of information tracks while rotating the reticle, and irradiate the reticle with illuminating light of a slit-like shape or a sectoral shape extending in the diametrical direction of the circular reticle to thereby effect rotation scan exposure.
Abstract:
Nozzle arrays for ink jet recording are produced by preferred chemical etching of a substrate material which frequently has a non-uniform thickness. The preferred substrate is a monocrystalline silicon wafer and the 100 plane surface of the wafer is coated with etchant masking material and the resist coated wafer is held in close physical contact with a base member. A suitable mask member which defines a nozzle array pattern is spaced a predetermined distance from the base member and is positioned parallel to the base member. The wafer is then exposed through the mask by a suitable light source arranged at a suitable angle while the wafer is simultaneously rotated about an axis perpendicular to the wafer. The wafer is then exposed to a chemical anisotropic etching agent to produce a uniform array of nozzles in the wafer wherein the lateral walls of the nozzles are substantially in the "111" plane of the wafer. The masking material is then stripped from the wafer.