Abstract:
According to an example, a server node may include a base module and a plurality of face modules rotatably coupled to the base module to form an enclosure. The base module and a face module of the plurality of face modules may each include an inner surface that includes an electrical component. A flexible printed circuit interconnect may communicatively interconnect the electrical component on the inner surface of the base module to the electrical component on the inner surface of the face module.
Abstract:
Apparatus and method are provided for facilitating simulation of heated airflow exhaust of an electronics subsystem, electronics rack or row of electronics racks. The apparatus includes a thermal simulator, which includes an air-moving device and a fluid-to-air heat exchanger. The air-moving device establishes airflow from an air inlet to air outlet side of the thermal simulator tailored to correlate to heated airflow exhaust of the electronics subsystem, rack or row of racks being simulated. The fluid-to-air heat exchanger heats airflow through the thermal simulator, with temperature of airflow exhausting from the simulator being tailored to correlate to temperature of the heated airflow exhaust of the electronics subsystem, rack or row of racks being simulated. The apparatus further includes a fluid distribution apparatus, which includes a fluid distribution unit disposed separate from the fluid simulator and providing hot fluid to the fluid-to-air heat exchanger of the thermal simulator.
Abstract:
Briefly described, embodiments of this disclosure include heat management devices, heat management systems, methods of heat management, and the like.
Abstract:
A container data center includes a container and a server cabinet received in the container. The server cabinet includes a rack and a number of heat dissipation devices mounted to a rear side of the rack. Each heat dissipation device includes a case fixed to the rack, a fan mounted to an outer side of the case, and a heat dissipation plate received in the case and aligning with the fan. The heat dissipation plate defines a vent. The fan draws heat air through the vent of the heat dissipation plate from the rack, and the heat air is cooled by refrigerant received in the heat dissipation plate to become cool air. The cool air flows in the container, and circularly flows into the cabinet from a front side of the cabinet.
Abstract:
A high performance computing system includes one or more blade enclosures having a cooling manifold and configured to hold a plurality of computing blades, and a plurality of computing blades in each blade enclosure with at least one computing blade including two computing boards. The system further includes two or more cooling plates with each cooling plate between two corresponding computing boards within the computing blade, and a fluid connection coupled to the cooling plate(s) and in fluid communication with the fluid cooling manifold.
Abstract:
A power-supply controlling system includes an integrated circuit that outputs a first instruction signal, which instructs an electricity-supply unit to supply electricity to a device that releases heat, a detecting unit that detects an operating status of a cooling unit that cools the device, a state signal generating unit that generates a state signal in accordance with the detected operating status, the state signal indicating whether or not the cooling unit is being driven, and an output unit that generates a second instruction signal by using the first instruction signal and the state signal, and outputs the second instruction signal to the electricity-supply unit, the second instruction signal giving an instruction to supply electricity to the device.
Abstract:
A multi-core microprocessor provides an indication of the power management state of each of the cores on output terminals. Cooling of the cores is adjusted responsive to the indication of the power management state of the respective cores with additional cooling being provided to those cores in a more active state and less cooling provided to those cores in a less active state.
Abstract:
Systems associated with moving heat out of a computer are described. One exemplary system embodiment includes a large heat exchanger, large, quiet, automatically redundant fans, automatically redundant pumps, and a leak containment apparatus. The example system may also include logics for selectively controlling air flow, liquid flow, and flow paths.
Abstract:
A heat transfer apparatus and method are provided for transferring heat between integrated circuits. In use, a heat transfer medium is provided with a first end in thermal communication with a first integrated circuit and a second end in thermal communication with a second integrated circuit. Furthermore, a single casting formed about the heat transfer medium and defining at least one heat sink is provided for thermal communication with the first integrated circuit or the second integrated circuit.
Abstract:
A heat dissipation device includes a heat pipe, a first fin unit, a second fin unit, and a centrifugal fan arranged on the first fin unit for drawing air from the first fin unit to the second fin unit. The heat pipe includes an evaporation section, a first condensing section and a second condensing section. The first fin unit includes a plurality of stacked first fins with a first channel defined between adjacent first fins. A notch is defined in the first fin unit receiving the evaporation section, and a canal is defined in the first fin unit receiving the first condensing section of the heat pipe. The second channel includes a plurality of stacked second fins. A second channel is defined between adjacent second fins perpendicular to the first channels. A passage is defined in the second fin unit receiving the second condensing section of the heat pipe.