Abstract:
A multi-beam x-ray system includes an x-ray source which emits x-rays and a housing with a first part and a second part. The second part is moveable relative to the first part and includes a plurality of optics of different performance characteristics. Each optic, through the movement of the second part relative to the first part, is positioned to a working position so that the optic receives the x-rays from the x-ray source and directs the x-rays with the desired performance attributes to a desired location.
Abstract:
An x-ray analysis system with an x-ray source for producing an x-ray excitation beam directed toward an x-ray analysis focal area; and a sample chamber for presenting a fluid sample to the x-ray analysis focal area. The x-ray excitation beam is generated by an x-ray engine and passes through an x-ray transparent barrier on a wall of the chamber, to define an analysis focal area within space defined by the chamber. The fluid sample is presented as a stream suspended in the space and streaming through the focal area, using a laminar air flow and/or pressure to define the stream. The chamber's barrier is therefore separated from both the focal area and the sample, resulting in lower corruption of the barrier.
Abstract:
An extreme ultraviolet light generation system is an extreme ultraviolet light generation system which is used with a laser apparatus and is connected to an external device so as to supply extreme ultraviolet light thereto, and the extreme ultraviolet light generation system may include: a chamber provided with at least one inlet through which a laser beam is introduced thereinto; a target supply unit provided to the chamber for supplying a target material to a predetermined region inside the chamber; a discharge pump connected to the chamber; at least one optical element disposed inside the chamber; an etching gas introduction unit provided to the chamber through which etching gas passes, the etching gas being introduced to etch debris of the target material which is emitted when the target material is irradiated with the laser beam inside the chamber and adheres to the at least one optical element; and at least one temperature control mechanism for controlling a temperature of the at least one optical element.
Abstract:
A system for producing at least one high flux photon beam is provided. The system includes two or more photon sources configured to produce photon beams, and at least one first stage optic device coupled to at least one of the photon sources and providing at least one focused photon beam through total internal reflection, wherein at least one of the photon beams and the focused photon beams are combined at a virtual focal spot.
Abstract:
An x-ray analysis apparatus for illuminating a sample spot with an x-ray beam. An x-ray tube is provided having a source spot from which a diverging x-ray beam is produced having a characteristic first energy, and bremsstrahlung energy; a first x-ray optic receives the diverging x-ray beam and directs the beam toward the sample spot, while monochromating the beam; and a second x-ray optic receives the diverging x-ray beam and directs the beam toward the sample spot, while monochromating the beam to a second energy. The first x-ray optic may monochromate characteristic energy from the source spot, and the second x-ray optic may monochromate bremsstrahlung energy from the source spot. The x-ray optics may be curved diffracting optics, for receiving the diverging x-ray beam from the x-ray tube and focusing the beam at the sample spot. Detection is also provided to detect and measure various toxins in, e.g., manufactured products including toys and electronics.
Abstract:
An X-ray optical configuration (1), comprising a position for an X-ray source (2), a position for a sample (3), a first focusing element (4) for directing X-ray radiation from the position of the X-ray source (2) via an intermediate focus (5) onto the position of the sample (3), and an X-ray detector (6) that can be moved on a circular arc (7) of radius R around the position of the sample (3), is characterized in that the configuration also comprises a second focusing element (8) for directing part of the X-ray radiation emanating from the intermediate focus (5) onto the position of the sample (3), and an aperture system (9) for selecting between illumination of the position of the sample (3) exclusively and directly from the intermediate focus (5) (=first optical path (10′)), or exclusively via the second focusing element (8) (=second optical path (10″)). The configuration facilitates changing between reflection geometry and transmission geometry, in particular, wherein modification and adjustment devices are minimized or unnecessary.
Abstract:
A cooling system (10) for an extreme ultraviolet (EUV) grazing incidence collector (GIC) mirror assembly (240) having at least one shell (20) with a back surface (22) is disclosed. The cooling system has a plurality of spaced apart circularly configured cooling lines (30) arranged in parallel planes (PL) that are perpendicular to the shell central axis (AC) and that are in thermal contact with and that run around the back surface.Input and output secondary cooling-fluid manifolds (44, 46) are respectively fluidly connected to the plurality of cooling lines to flow a cooling fluid from the input secondary cooling-fluid manifold to the output cooling secondary fluid manifold over two semicircular paths for each cooling line. Separating the cooling fluid input and output locations reduces thermal gradients that can cause local surface deformations in the shell that can lead to degraded focusing performance.
Abstract:
A method for producing a shaped body (10) made of glass or glass ceramics comprises the steps of: (a) placing at least two glass blanks (12a, 12b) side by side on a shaped surface (14) of a temperature-resistant sagging mold (13); (b) sagging the glass blanks (12a, 12b) onto the shaped surface (14) by heating the sagging mold (13) and the glass blanks (12a, 12b); (c) attaching the sagged glass blanks (10a, 10b) to each other in order to form the shaped body (10); and (d) lifting the shaped body (10) from the sagging mold (13). A shaped body (10) comprises at least two glass blanks (10a, 10b) attached side by side and formed by sagging.
Abstract:
A bundle-guiding optical collector collects an emission of a radiation source and forms a radiation bundle from the collected emission. A reflective surface of the collector is the first bundle-forming surface downstream of the radiation source. The reflective surface is formed such that it converts the radiation source into a family of images in a downstream plane. The family of images includes a plurality of radiation source images which are offset to each other in two dimensions (x, y) in a direction perpendicular to the beam direction of the transformed radiation bundle and are arranged relative to each other in a non-rotationally symmetric manner relative to the beam direction of the transformed radiation bundle. The transformed radiation bundle in the downstream plane has a non-rotationally symmetric bundle edge contour relative to the beam direction of the transformed radiation bundle. The result is a collector in which the radiation bundle shape generated by the collector. In other words, the illumination distribution generated by the collector in a defined manner in the plane downstream of the collector has a shape which is freely selectable to the greatest possible extent.
Abstract:
An X-ray convergence element and an X-ray irradiation device including the X-ray convergence element are provided. The X-ray convergence element can extend a working distance from an exit-side opening end thereof to a specimen, and can perform analysis of the specimen with rough surface, a fluorescent X-ray analysis, and a X-ray diffraction analysis, regardless of a size of the specimen. An X-ray blocking member 23 is provided with three supporting members 233 for supporting the X-ray blocking member 23, which extend from an annular member 232 having approximately the same diameter as a diameter of an entrance-side opening end (outer diameter of a capillary 20) toward the center of the X-ray blocking member 23 to fix the annular member 232 to the capillary 20. The annular member 232, the supporting members 233, and the X-ray blocking member 23 are integrally formed of a metal that shields X-rays, such as tantalum, tungsten, or molybdenum. A dimension of the X-ray blocking member 23 in the axial direction (thickness) is set to be sufficient for blocking X-rays.