Abstract:
A crystal monochromator is manufactured by heating a crystal having an original thickness to a temperature of over about 850° C. The crystal is compressed for a duration of approximately 1-5 minutes with a force of about 5-10 metric tons while the crystal is maintained at the temperature of over about 850° C. to plastically deform the crystal along an axis, wherein the compressing causes a plastic deformation of about 0.5%-1.5% of the original thickness. The crystal may be sliced to form crystal monochromators having a mosaicity of between about 15-28 arcminutes and a slow neutron reflectivity of over 70% at a rocking curve peak.
Abstract:
An X-ray lens arrangement for forming a radiation pattern as a focal track is disclosed. The pattern comprises at least one 3-dimensional focal track of radiation. The aforesaid lens arrangement has a main axis passing through intensity weighted centroids of the X-ray source and the pattern. The lens arrangement includes at least one reflecting surface of continuously varying Rowland arcs. Each point belonging to the focal track is linked to each elemental point composing an emitting surface of said source by a corresponding Rowland arc.
Abstract:
An object of the invention is to provide a novel optical design method for an X-ray focusing system capable of collecting all the fluxes, while applying an X-ray of a very small divergence angle to the entire surface of a rotating mirror. The method includes a step of determining the shape of a rotating mirror (3) provided with a reflection surface, the reflection surface being formed by rotating, by one turn around an optical axis (OA), a one-dimensional profile composed of an ellipse or a part of combination of the ellipse and a hyperbolic curve, the ellipse including a downstream focal point (F) serving as a light collecting point of the X-ray focusing system, and including an upstream focal point (F1) deviated from the optical axis (OA); and a step of determining the shape of a reflection surface of an annular focusing mirror (4).
Abstract:
A doubly bent X-ray spectroscopic device (1) according to the present invention includes: a glass plate (3) which is deformed into a shape having a doubly bent surface by being sandwiched between a doubly curved convex surface (21a) of a convex forming die (21) and a doubly curved concave surface (22a), of a concave forming die (22), that matches the doubly curved convex surface (21a), and being heated to a temperature of 400° C. to 600° C.; and a reflection coating (5) configured to reflect X-rays, which is formed on a concave surface (3a) of the deformed glass plate (3 ).
Abstract:
A method of preparing two dimension bent X-ray crystal analyzers in strips feature is provided. A crystal wafer in strips is bonded to a curved substrate which offers the desired focus length. A crystal wafer in strips is pressed against the surface of the substrate forming curved shape by anodic bonding or glue bonding. The bonding is permanently formed between crystal wafer and its substrate surface, which makes crystal wafer has same curvature as previously prepared substrate.
Abstract:
A projection lens of an EUV-lithographic projection exposure system with at least two reflective optical elements each comprising a body and a reflective surface for projecting an object field on a reticle onto an image field on a substrate if the projection lens is exposed with an exposure power of EUV light, wherein the bodies of at least two reflective optical elements comprise a material with a temperature dependent coefficient of thermal expansion which is zero at respective zero cross temperatures, and wherein the absolute value of the difference between the zero cross temperatures is more than 6K.
Abstract:
An X-ray system comprises: a source of an X-ray diverging beam having a central imaging portion and a peripheral treatment-portion; a lens transforming the peripheral treatment portion of the X-ray beam into a converging beam directed to a target; a shutter located between the X-ray source and the target in the central imaging portion of the X-ray radiation; and a detector of imaging radiation after interaction with the target and to provide imaging information of the target.
Abstract:
A mobile transport and shielding apparatus, which holds an x-ray analyzer for transport between operating sites, and also serves as a shielded, operational station for holding the x-ray analyzer during operation thereof. The x-ray analyzer is removably insertable into the apparatus and is operable either within the mobile transport and shielding apparatus, or outside of the apparatus. The apparatus may provide means to control, power, cool, and/or charge the x-ray analyzer during operation of the analyzer; and also means to transport the analyzer (e.g., a handle).
Abstract:
A plasma-generated EUV light source uses an EUV-diffracting collection mirror to channel spectrally pure in-band radiation through an intermediate-focus aperture and through EUV illumination optics. Out-of-band radiation is either undiffracted by the collection mirror or is diffractively scattered away from the aperture. The undiffracted portion, plus plasma-emitted radiation that does not intercept the collection mirror, can be efficiently recycled back to the plasma via retroreflecting mirrors, cat's-eye reflectors, or corner-cube reflectors, to enhance generation of in-band EUV radiation by the plasma.
Abstract:
Methods for receiving a high-energy EUV beam and distributing EUV sub-beams to photolithography scanners and the resulting device are disclosed. Embodiments include receiving a high-energy primary EUV beam at a primary splitting optical assembly; splitting the primary EUV beam into primary EUV sub-beams; reflecting the primary EUV sub-beams to beam-splitting optical arrays; splitting the primary EUV sub-beams into secondary EUV sub-beams; reflecting the secondary EUV sub-beams to EUV distribution optical arrays; and distributing simultaneously the secondary EUV sub-beams to scanners.