Abstract:
A method of sending status information (STATUS PDU) in which a receiving side reports a data received state to a transmitting side in a mobile telecommunication system. A receiving side radio link control (RLC) entity considers an available radio resource to construct a status PDU fit to a size of the available radio resource and then sends the constructed status PDU to a transmitting side RLC entity, thereby avoiding a deadlock situation of RLC protocols.
Abstract:
Provided are a MIMO transmission device and a MIMO transmission method which can improve reception quality of a response signal. A terminal (100) as the MIMO transmission device maps a first and a second element of the ACK/NACK signal vector formed from ACK/NACK signals onto a first and a second stream, respectively, and transmits the elements contained in a 2SC-FDMA symbol in a single slot. In the terminal (100), a response signal vector formation unit (140) forms [a·Sack, 0] as the ACK/NACK signal vector in a first SC-FDMA symbol and [0, a·Sack] as an ACK/NACK signal vector in a second SC-FDMA symbol. A precoding unit (165) uses a unitary matrix to precode the ACK/NACK signal vector formed in the response signal vector formation unit (140).
Abstract:
Disclosed is a method for enhancing of controlling radio resource and transmitting a Status Report in a mobile telecommunications system, and a receiver of mobile telecommunications system. When any PDUs that have not been received (‘missing PDUs’) occur, a receiving RLC entity does not immediately request re-transmission about the ‘missing PDUs’. Rather, only when missing PDUs more than a predetermined number occur, the receiving RLC entity requests the re-transmission. Accordingly, an amount of radio resources required to transmit a Status Report can be reduced.
Abstract:
Discussed is a method of sending status information (STATUS PDU) in which a receiving side reports a data received state to a transmitting side in a mobile telecommunication system. A receiving side RLC entity considers an available radio resource to construct a status PDU fit to the size of the radio resource and then sends the constructed status PDU to a transmitting side RLC entity, thereby avoiding a deadlock situation of RLC protocols.
Abstract:
Methods, systems, and computer readable media for updating sequence and acknowledgment numbers associated with replay packets are disclosed. In one example, a method includes generating, at a sending peer node, a replay packet that includes a payload associated with a capture file packet and accessing, in the sending peer node, a sequence-differential (SEQ-DIFF) list using an original sequence number associated with the replay packet. The method further includes traversing entries in the SEQ-DIFF list, wherein each of the entries includes a sequence number and a payload length differential value, applying, for each traversed entry in the SEQ-DIFF list, the payload length differential value to the original sequence number to determine an updated sequence number for the replay packet, and transmitting, from the sending peer node to a receiving peer node, the replay packet that includes the updated sequence number.
Abstract:
Apparatuses and methods for supporting multicast device-to-device communications are described herein. A user equipment (UE) may transmit a request to a serving evolved Node B (eNodeB) for permission to transmit to a group of peer UEs. The UE may receive a resource assignment in response to the request. The resource allocation assignment may specify a group identifier. The group identifier may identify a group including the UE and the group of peer UEs. The UE may transmit a multicast transmission to the group of peer UEs using a resource assigned by the eNodeB with the resource assignment.
Abstract:
With the proliferation of Machine-Type Communication (MTC), an excessive use of device trigger messages in a Long Term Evolution (LTE) network can have negative effects on user equipment (UE). These effect can include a shortening of UE battery life and/or excessive signalling caused by the frequent changing from an idle mode to an active mode. An MTC Interworking Function (MTC-IWF) can be configured to determine the status of a UE to which a device trigger message is intended. If the device trigger message is low priority and the UE is in an idle state, the MTC-IWF or Mobile Management Entity (MME)/Serving GPRS Support Node (SGSN)/Mobile Switching Center (MSC) can buffer the device trigger message.
Abstract:
Disclosed in some examples is a method for providing a HARQ response in an LTE network for a PUCCH format 1b. The method includes receiving one or more downlink assignments of a bundling window over a wireless downlink control channel; setting a reception status for each sub-frame of a downlink data channel in the bundling window based on whether the sub-frame on the downlink data channel was associated with a particular one of the received downlink assignments and based upon whether the sub-frame was successfully received; setting a reception status of sub-frames of the downlink data channel in the bundling window that did not have a corresponding downlink assignment to a predetermined value; and transmitting a response, the response based upon the reception statuses set by the response module.
Abstract:
Provided are a MIMO transmission device and a MIMO transmission method which can improve reception quality of a response signal. A terminal (100) as the MIMO transmission device maps a first and a second element of the ACK/NACK signal vector formed from ACK/NACK signals onto a first and a second stream, respectively, and transmits the elements contained in a 2SC-FDMA symbol in a single slot. In the terminal (100), a response signal vector formation unit (140) forms [a·Sack, 0] as the ACK/NACK signal vector in a first SC-FDMA symbol and [0, a·Sack] as an ACK/NACK signal vector in a second SC-FDMA symbol. A precoding unit (165) uses a unitary matrix to precode the ACK/NACK signal vector formed in the response signal vector formation unit (140).
Abstract:
Provided are a MIMO transmission device and a MIMO transmission method which can improve reception quality of a response signal. A terminal (100) as the MIMO transmission device maps a first and a second element of the ACK/NACK signal vector formed from ACK/NACK signals onto a first and a second stream, respectively, and transmits the elements contained in a 2SC-FDMA symbol in a single slot. In the terminal (100), a response signal vector formation unit (140) forms [aSack, O] as the ACK/NACK signal vector in a first SC-FDMA symbol and [O, aSack] as an ACK/NACK signal vector in a second SC-FDMA symbol. A precoding unit (165) uses a unitary matrix to precode the ACK/NACK signal vector formed in the response signal vector formation unit (140).