Abstract:
This invention relates to an adhesive composition, comprising: (A) at least one multifunctional epoxy; and (B) the composition derived from (B-1) at least one difunctional epoxy resin and (B-2) at least one compound represented by the formulaR--(G).sub.n (1)wherein in Formula (I): R is an aromatic, alicyclic or heterocyclic group; G is a functional group selected from the group consisting of COOH, OH, SH, NH.sub.2, NHR.sup.1, (NHC(.dbd.NH)).sub.m NH.sub.2, R.sup.2 COOH, R.sup.2 OH, R.sup.2 SH, R.sup.2 NH.sub.2 and R.sup.2 NHR.sup.1, wherein R.sup.1 is a hydrocarbon group, R.sup.2 is an alkylene or alkylidene group and m is a number in the range of 1 to about 4; and n is a number ranging from 3 up to the number of displaceable hydrogens on R; with the proviso that when at least one G is NH.sub.2 or R.sup.2 NH.sub.2, n is a number ranging from 2 up to the number of displaceable hydrogens on R, and when at least one G is (NHC(.dbd.NH)).sub.m NH.sub.2, n is a number ranging from 1 up to the number of displaceable hydrogens on R. The invention also relates to copper foils having the foregoing adhesive composition adhered to at least one side thereof to enhance the adhesion between said foils and dielectric substrates. The invention also relates to laminates comprising copper foil, a dielectric substrate, and an adhesion-promoting layer comprising the foregoing adhesive composition disposed between and adhered to the foil and the substrate.
Abstract:
This invention relates to an adhesive composition, comprising: (A) at least one multifunctional epoxy; and (B) the composition derived from (B-1) at least one difunetional epoxy resin and (B-2) at least one compound represented by the formulaR--(G).sub.n (I)wherein in Formula (I): R is an aromatic, alicyclic or heterocyclic group; G is a functional group selected from the group consisting of COOH, OH, SH, NH.sub.2, NHR.sup.1, (NHC(.dbd.NH)).sub.m NH.sub.2, R.sup.2 COOH, R.sup.2 OH, R.sup.2 SH, R.sup.2 NH.sub.2 and R.sup.2 NHR.sup.1, wherein R.sup.1 is a hydrocarbon group, R.sup.2 is an alkylene or alkylidene group and m is a number in the range of 1 to about 4; and n is a number ranging from 3 up to the number of displaceable hydrogens on R; with the proviso that when at least one G is NH.sub.2 or R.sup.2 NH.sub.2, n is a number ranging from 2 up to the number of displaceable hydrogens on R, and when at least one G is (NHC(.dbd.NH)).sub.m NH.sub.2, n is a number ranging from 1 up to the number of displaceable hydrogens on R. The invention also relates to copper foils having the foregoing adhesive composition adhered to at least one side thereof to enhance the adhesion between said foils and dielectric substrates. The invention also relates to laminates comprising copper foil, a dielectric substrate, and an adhesion-promoting layer comprising the foregoing adhesive composition disposed between and adhered to the foil and the substrate.
Abstract:
A printed circuit board and method of manufacture thereof is disclosed. The printed circuit board includes a first substrate provided from a conductive layer having disposed on a first surface thereof a cured adhesive layer. A semi-cured adhesive layer is then disposed over the cured adhesive layer and a second substrate is disposed against the semi-cured adhesive layer.
Abstract:
A multilayer laminate having at least one layer of a no longer formable fully aromatic polyimide and at least one layer of substrate material, the layer of no longer formable polyimide adhering directly on one side to the layer of substrate material with a peel strength of at least 4.0 N/cm. The layer of no longer also formable polyimide is also insoluble in phenolic solvents, has a tensile strength of from 100 to 150 N/mm.sup.2, a breaking elongation of from 15 to 100%, a dielectric dissipation factor of from 1.5.times.10.sup.-3 to 5.times.10.sup.-3 at 1 kHz. Additionally, a layer of heat-sealable high-temperature adhesive selected from the class of polyacrylates, polysulfone resins, epoxy resins, fluoropolymer resins, silicone resins or butyl rubbers is joined to that side of the polyimide layer which is remote from the substrate material.
Abstract:
A circuit board according to an embodiment includes an insulating layer; and a circuit pattern disposed on the insulating layer, wherein the circuit pattern includes a copper foil layer disposed on the insulating layer, a first plating layer disposed on the copper foil layer, and a second plating layer disposed on the first plating layer, and wherein the copper foil layer has a thickness in a range of 2 μm to 5 μm.
Abstract:
A copper foil composite comprising a copper foil and a resin layer laminated thereon, satisfying an equation 1: (f3×t3)/(f2×t2)=>1 wherein t2 (mm) is a thickness of the copper foil, f2 (MPa) is a stress of the copper foil under tensile strain of 4%, t3 (mm) is a thickness of the resin layer, f3 (MPa) is a stress of the resin layer under tensile strain of 4%, and an equation 2: 1
Abstract:
An enhanced prepreg for printed circuit board (PCB) laminates includes a substrate and a resin applied to the substrate. The resin includes a curable polymer and a polymerization initiator polymer having a backbone with a free radical initiator forming segment that breaks apart upon being subjected to heat to generate a plurality of non-volatile initiating species. This resin composition eliminates possible volatile loss of the free radical initiator during all processing steps in the preparation of PCB laminates. The resin may additionally include a cross-linking agent, flame retardant and viscosity modifiers. In one embodiment, a sheet of woven glass fibers is impregnated with the resin and subsequently dried or cured. The glass cloth substrate may include a silane coupling agent to couple the resin to the substrate. In another embodiment, resin coated copper (RCC) is prepared by applying the resin to copper and subsequently curing the resin.
Abstract:
A copper foil composite comprising a copper foil and a resin layer laminated thereon, wherein equation 1: (f3×t3)/(f2×t2)=>1 is satisfied when t2 (mm) is a thickness of the copper foil, f2 (MPa) is a stress of the copper foil under tensile strain of 4%, t3 (mm) is a thickness of the resin layer, f3 (MPa) is a stress of the resin layer under tensile strain of 4%, and equation 2: 1
Abstract:
A printed circuit board includes an inner layer having a supporting pattern and via pad patterns that are disposed to be spaced apart from each other in a lateral direction, an outer layer disposed over or below the inner layer and including a circuit pattern, a via plug connecting the circuit pattern layer to any one of the via pad patterns. The supporting pattern is stiffer than the via pad patterns, and at least two of the via pad patterns are electrically connected to each other by a via pad connecting pattern located at substantially the same level as the via pad patterns.
Abstract:
In an opto-electric hybrid board according to the present invention, an electrical interconnect line and an optical element are provided on a first surface of a substrate, and an optical waveguide optically coupled to the optical element is provided on a second surface of the substrate. A reinforcement layer for reinforcing the substrate is integrally mounted on the first surface of the substrate on which the electrical interconnect line and the optical element are provided, with an adhesive layer therebetween. A connector pad part for externally electrically connecting the electrical interconnect line is provided on the second surface of the substrate on which the optical waveguide is provided. With this configuration, the reinforcement layer is mounted on the substrate with high strength without adverse effects exerted on the optical element and the optical waveguide.