Abstract:
This invention concerns a process for the production of vinyl esters of carboxylic acids with 3 to 20 carbon atoms, via vinylation in the presence of palladium (Pd) catalyst in combination with copper (Cu) as co-catalyst stabilized by organic salts in the presence of ethylene and air or oxygen.
Abstract:
A composition comprising, a rubber component selected from the group consisting of a rubber polymer, a synthetic rubber polymer, and combinations thereof; and an alkylphenol resin which is a reaction product of: at least one phenolic monomer selected from the group consisting of phenol, cresol, resorcinol, xylenol, ethyl phenol, alkylresorcinols, and combinations thereof; and at least one alkyl aldehyde having from 5 to 12 carbon atom alkyl groups, is disclosed. The composition can be used to prepare articles of manufacture such as tires, tire treads, tire shoulders, tire sidewalls, rubber belts, and rubber hoses.
Abstract:
The embodiments described herein generally relate to methods and chemical compositions of triazine-arylhydroxy-aldehyde condensates. In one embodiment, a triazine-arylhydroxy-aldehyde condensate is reacted with at alkoxylation agent to form alkoxylated triazine-arylhydroxy-aldehyde condensates.
Abstract:
Polymeric materials and methods for making the polymeric materials utilizing bisphenolic stillbottoms, lignosulfonates, or both are disclosed. In one embodiment, a polymer is provided that includes a condensate of bisphenolic stillbottoms, an optional phenolic compound independent of bisphenolic stillbottoms, an aldehyde, and a lignosulfonate compound. The condensate may further include an amino compound, a catalyst, or combinations thereof. Alternatively, the polymer may be free of a phenolic compound independent of bisphenolic stillbottoms. The polymers may be used in the manufacture of articles including composites, laminates and paper products.
Abstract:
Polymeric materials and methods for making the polymeric materials utilizing bisphenolic stillbottoms, lignosulfonates, or both are disclosed. In one embodiment, a polymer is provided that includes a condensate of bisphenolic stillbottoms, an optional phenolic compound independent of bisphenolic stillbottoms, an aldehyde, and a lignosulfonate compound. The condensate may further include an amino compound, a catalyst, or combinations thereof. Alternatively, the polymer may be free of a phenolic compound independent of bisphenolic stillbottoms. The polymers may be used in the manufacture of articles including composites, laminates and paper products.
Abstract:
Compositions comprising Silane functionalized compounds are provided. In one embodiment, the silane functionalized compounds include an epoxy resin derived backbone having silane functional groups pendant to the backbone or serving as end caps. The compositions comprising silane functionalized compounds may be utilized in a variety of applications including in coating formulations, adhesive formulations, composite materials, and combinations thereof.
Abstract:
Complexes, compositions, articles of manufacture, and method for making the same are provided herein. In one embodiment, a borate-polyol complex may be prepared by reacting a boron-containing compound and a polyol to form a reaction mixture and then neutralizing the reaction mixture to form a neutralized borate-polyol complex. The neutralized borate-polyol complex may then be used in combination with polymeric resins to form adhesive products, among other material products, which products can be in manufacturing articles.
Abstract:
Polymeric materials and methods for making the polymeric materials utilizing bisphenolic stillbottoms, lignosulfonates, or both are disclosed. In one embodiment, a polymer is provided that includes a condensate of bisphenolic stillbottoms, an optional phenolic compound independent of bisphenolic stillbottoms, an aldehyde, and a lignosulfonate compound. The condensate may further include an amino compound, a catalyst, or combinations thereof. Alternatively, the polymer may be free of a phenolic compound independent of bisphenolic stillbottoms. The polymers may be used in the manufacture of articles including composites, laminates and paper products.
Abstract:
Compositions and methods for forming epoxy resin are provided, and compositions and methods for forming epoxy resin composites are provided. In one embodiment, a composite comprises an epoxy resin composition comprising an epoxy resin component comprising a glycidyl ether of an aryl substituted phenolic compound, a curing agent component, and a substrate. In one embodiment, a composite comprises an epoxy resin composition comprising an epoxy resin component and a curing agent component comprising an aryl substituted phenolic compound, and a substrate.
Abstract:
Polyester materials, methods for making polyesters materials, and uses of the polyester materials in binder materials and articles of manufacture are disclosed. In one embodiment, a process is provided for preparing a polyester solution, including mixing monomers of at least one organic acid containing at least three carboxylic groups and at least one multi-hydroxyl alcohol containing at least three hydroxyl groups to form a reaction mixture, heating the reaction mixture to a first temperature, polymerizing the monomers at the first temperature until reaching an acid value from about 200 to about 400 mg KOH/g, adjusting the temperature to a second temperature less than the first temperature, and forming the polyester solution. The polyester materials may be mixed with cross-linking materials to form binder materials. The binder material may then be used to form articles of manufacture.