Abstract:
Methods of fabricating improved gemstones and gemstones thus obtained are described. Roughness is introduced on facets of a gemstone through application of nanometer and/or micrometer sized features, to provide the facets with a hazy white-colored appearance. Alternatively, millimeter-sized reflective features can be applied on the facets, to form a gemstone with improved scintillation or play of light.
Abstract:
A method of fabricating an elastomeric structure, comprising: forming a first elastomeric layer on top of a first micromachined mold, the first micromachined mold having a first raised protrusion which forms a first recess extending along a bottom surface of the first elastomeric layer; forming a second elastomeric layer on top of a second micromachined mold, the second micromachined mold having a second raised protrusion which forms a second recess extending along a bottom surface of the second elastomeric layer; bonding the bottom surface of the second elastomeric layer onto a top surface of the first elastomeric layer such that a control channel forms in the second recess between the first and second elastomeric layers; and positioning the first elastomeric layer on top of a planar substrate such that a flow channel forms in the first recess between the first elastomeric layer and the planar substrate.
Abstract:
A miniaturized fluidic spectrometer comprises a light source, a fluidic circuit having a plurality of flow channels through which an analyte flows, and a proximity detector array for detecting light from the light source transmitted through the fluidic circuit. Where the light source is broadband, a variable filter is disposed between the detector array and the fluidic circuit so that each position of the detector array is provided with a different wavelength response. The fluidic circuit is disposed in an optimized Fabry-Perot etalon. The fluidic circuit is defined in an elastomeric material and includes means for tuning the Fabry-Perot etalon by pressurization of flow channels in the elastomeric material.
Abstract:
A method of fabricating an elastomeric structure, comprising: forming a first elastomeric layer on top of a first micromachined mold, the first micromachined mold having a first raised protrusion which forms a first recess extending along a bottom surface of the first elastomeric layer; forming a second elastomeric layer on top of a second micromachined mold, the second micromachined mold having a second raised protrusion which forms a second recess extending along a bottom surface of the second elastomeric layer; bonding the bottom surface of the second elastomeric layer onto a top surface of the first elastomeric layer such that a control channel forms in the second recess between the first and second elastomeric layers; and positioning the first elastomeric layer on top of a planar substrate such that a flow channel forms in the first recess between the first elastomeric layer and the planar substrate.
Abstract:
A metal waveguide is coupled to a dielectric waveguide to obtain transmission of light in a plasmon mode along an edge of the metal waveguide. Efficient, broadband light transmission is obtained, achieving a low insertion loss, using standard processing tools. An efficient integrated optical circuit is obtained.
Abstract:
A method of fabricating an elastomeric structure, comprising: forming a first elastomeric layer on top of a first micromachined mold, the first micromachined mold having a first raised protrusion which forms a first recess extending along a bottom surface of the first elastomeric layer; forming a second elastomeric layer on top of a second micromachined mold, the second micromachined mold having a second raised protrusion which forms a second recess extending along a bottom surface of the second elastomeric layer; bonding the bottom surface of the second elastomeric layer onto a top surface of the first elastomeric layer such that a control channel forms in the second recess between the first and second elastomeric layers; and positioning the first elastomeric layer on top of a planar substrate such that a flow channel forms in the first recess between the first elastomeric layer and the planar substrate.
Abstract:
Microfluidic valves constructed from elastomeric materials as the valve body components and employing shape memory alloy in wire form as the valve actuator. Various configurations of individual valves having both normally open and normally closed states are described. Apparatus using such valves and providing logic functionality with fluidic logic outputs are discussed. Apparatus that can be used for materials processing at the nano- or micro-scale are presented. Various forms of logical control of valve arrays are explained.
Abstract:
The invention relates to a microfluidic dye laser including a pump light source configured to provide light having a pump light wavelength. The microfluidic dye laser also includes an elastomer substantially optically transparent at the pump light wavelength and at a microfluidic dye laser wavelength. A microfluidic channel configured to accept a fluidic dye is defined in the elastomer. An optical grating is formed in a single mode 3D waveguide in the microfluidic channel in order to provide a single mode microfluidic dye laser light as output in response to illumination with light from the pump light source. In another aspect, the invention features a method of tuning a wavelength of a microfluidic dye laser light by mechanically deforming the elastomeric laser chip to change the grating period in the optical cavity.
Abstract:
The invention provides a high efficiency coupling structure for extracting illumination such as fluorescent radiation from a chemical reaction vessel such as a cuvette. The cuvette is provided with a mirrored surface. An end cap for the cuvette includes a probe portion that exhibits total internal reflection. Lenses are provided in various embodiments that improve the light collection and directing properties of the end cap. A fast optical system for free space coupling of optical radiation emanating from a chemical processing cuvette that uses the end cap as an element is also described.
Abstract:
The present invention provides microfluidic devices and methods for using the same. In particular, microfluidic devices of the present invention are useful in conducting a variety of assays and high throughput screening. Microfluidic devices of the present invention include elastomeric components and comprise a main flow channel; a plurality of branch flow channels; a plurality of control channels; and a plurality of valves. Preferably, each of the valves comprises one of the control channels and an elastomeric segment that is deflectable into or retractable from the main or branch flow channel upon which the valve operates in response to an actuation force applied to the control channel.