Abstract:
The present invention discloses a folding bicycle, wherein a folding joint is installed on the beam, and the rear fork is hinged with the frame via a hinge axle, on the rear fork is installed a support bar which rests against the frame; and wherein the beam is S-shaped, and the hinge axle is tilted by an acute angle with respect to the central axle of the frame. When the bicycle is folded, the front and rear wheels are located separately, each at one side of the beam and within the concave section of the S-shaped beam, so that the bicycle is more compact and has a less width after being folded.
Abstract:
A method for measuring a growth rate of a carbon nanotube includes the following steps: (a) providing a substrate (12); (b) forming a catalyst layer on the substrate; (c) heating the substrate to a predetermined temperature; (d) intermittently introducing/providing and then interrupting a reaction gas proximate the substrate to grow a patterned carbon nanotube array, each carbon nanotube having at least one line mark formed thereon as a result of the patterned growth; and (e) calculating the growth rate which is equal to a length between a pair of line marks divided by a time interval between said two line marks.
Abstract:
This invention discloses a power device package for containing, protecting and providing electrical contacts for a power transistor. The power device package includes a top and bottom lead frames for directly no-bump attaching to the power transistor. The power transistor is attached to the bottom lead frame as a flip-chip with a source contact and a gate contact directly no-bumping attaching to the bottom lead frame. The power transistor has a bottom drain contact attaching to the top lead frame. The top lead frame further includes an extension for providing a bottom drain electrode substantially on a same side with the bottom lead frame. In a preferred embodiment, the power device package further includes a joint layer between device metal of source, gate or drain and top or bottom lead frame, through applying ultrasonic energy. In another embodiment, a layer of conductive epoxy or adhesive, a solder paste, a carbon paste, or other types of attachment agents for direct no-bumping attaching the power transistor to one of the top and bottom lead frames.
Abstract:
Methods and apparatus are described for supporting wireless transmit/receive unit (WTRU) mobility between Home (evolved) Node Bs (H(e)NBs) that are configured to communicate with a Local Gateway (L-GW). The H(e)NBs and/or L-GW may belong to one or more Local H(e)NB Networks (LHNs). A WTRU may receive services including Selected Internet Protocol (IP) Traffic Offload (SIPTO) or Local IP Access (LIPA) services from the L-GW via one or more H(e)NBs. The WTRU may continue to receive SIPTO or LIPA services after a handover to another H(e)NB that may be in communication with the same L-GW and may belong to the same LHN. The WTRU may receive information related to the LHN or the L-GW to allow continuation of SIPTO or LIPA services as the WTRU moves among H(e)NBs and/or out of the LHN. The WTRU may receive and/or maintain one or more LHN Lists.
Abstract:
Methods and apparatus are described for transmitting and receiving data by a wireless transmit/receive unit (WTRU) over the control plane. The methods may receive data without the use of an Internet Protocol (IP) address. In an example method, a WTRU may enter an evolved packet system (EPS) mobility management (EMM)-registered control plane only (CPO) state after receiving an attach accepted message for CPO operation, and enter an EMM-deregistered state after receiving a detach message, a tracking area update (TAU) reject message or an attach reject message. In another method, a WTRU may switch between operational modes that use an IP address and a user plane to transmit and receive data, and the CPO mode.
Abstract:
A power semiconductor device package includes a conductive assembly including a connecting structure and a semiconductor die having an aperture formed therethrough, the aperture being sized and configured to spacedly receive the connecting structure. In an alternative embodiment, a power semiconductor device package includes a conductive assembly including a connecting structure and a pair of semiconductor die disposed on either side of the connecting structure in spaced relationship thereto.
Abstract:
Embodiments of a leadframe for a device packaging are used not only for structural support and connectivity to the I/O pins to the external world, but also for housing and/or mounting devices above and below the leadframe. Being electrically conductive, the leadframe also serves as a low resistance interconnect and good current carrier between the bondpads on one device or between the bondpads on different devices above and/or below the leadframe.
Abstract:
A method for making a carbon nanotube film includes the steps of providing an array of carbon nanotubes, treating the array of carbon nanotubes by plasma, and pulling out a carbon nanotube film from the array of carbon nanotubes treated by the plasma.
Abstract:
This disclosure provides systems, methods, and apparatus related to vanadium dioxide microactuators. In one aspect, a method includes depositing a vanadium dioxide layer on a sacrificial layer disposed on a substrate. A metal layer is deposited on the vanadium dioxide layer. The metal layer is patterned. Portions of the vanadium dioxide layer that are not covered by the metal layer are removed. At least a portion of the sacrificial layer is removed to form a cantilever-type structure including the vanadium dioxide layer and the metal layer disposed on the vanadium dioxide layer.
Abstract:
A method and device is provided for platform independent device communication by detecting a request at a processor-based device to perform a function, determining an external device corresponding to the request, retrieving a tag for the external device for performing a function corresponding to the request and generating a message implemented in XMPP, having embedded therein the tag, wherein the tag is essential at the external device for performing the function corresponding to the request. Receiving the message at a device, determining whether the message comprises a device message, retrieving a tag included in the message, wherein the tag corresponds to an executable command to perform a function and executing the tag to perform the function.