Capillary ion chromatography
    122.
    发明授权
    Capillary ion chromatography 有权
    毛细管离子色谱

    公开(公告)号:US08415168B2

    公开(公告)日:2013-04-09

    申请号:US13479119

    申请日:2012-05-23

    Abstract: An apparatus for capillary ion chromatography comprising a suppressor comprising flow-through ion exchange packing in a housing and capillary tubing formed of a permselective ion exchange membrane, and at least partially disposed in said ion exchange packing. Also, a recycle conduit for aqueous liquid from the detector to the packing. Further, the capillary tubing may have weakly acidic or weakly basic functional groups. Also, a method for using the apparatus.

    Abstract translation: 一种用于毛细管离子色谱的装置,包括抑制器,该抑制器包括在壳体中的流通离子交换填料和由选择性选择性离子交换膜形成的毛细管,并且至少部分地设置在所述离子交换填料中。 另外,从检测器到包装的水性液体循环管道。 此外,毛细管可具有弱酸性或弱碱性官能团。 另外,使用该装置的方法。

    Large capacity acid or base generator and method of use
    123.
    发明授权
    Large capacity acid or base generator and method of use 有权
    大容量酸或碱发生器及其使用方法

    公开(公告)号:US08367423B2

    公开(公告)日:2013-02-05

    申请号:US12706944

    申请日:2010-02-17

    Abstract: Method and apparatus for generating an acid or base, e.g. for chromatographic analysis of anions. For generating a base the method includes the steps of providing a cation source in a cation source reservoir, flowing an aqueous liquid stream through a base generation chamber separated from the cation source reservoir by a barrier (e.g. a charged membrane) substantially preventing liquid flow while providing a cation transport bridge, applying an electric potential between an anode cation source reservoir and a cathode in the base generation chamber to electrolytically generate hydroxide ions therein and to cause cations in the cation source reservoir to electromigrate and to be transported across the barrier toward the cathode to combine with the transported cations to form cation hydroxide, and removing the cation hydroxide in an aqueous liquid stream as an effluent from the first base generation chamber. Suitable cation sources include a salt solution, a cation hydroxide solution or cation exchange resin.

    Abstract translation: 用于产生酸或碱的方法和设备,例如, 用于阴离子的色谱分析。 为了产生碱,该方法包括以下步骤:在阳离子源储存器中提供阳离子源,使水性液体流通过基本上防止液体流动的屏障(例如带电膜)与阳离子源储存器分离的碱性产生室流动, 提供阳离子输送桥,在基底产生室中的阳极阳离子源储存器和阴极之间施加电位以在其中电解产生氢氧根离子,并使阳离子源储存器中的阳离子电迁移并穿过屏障向着 阴极与所运送的阳离子结合以形成阳离子氢氧化物,并且以水溶液流中的阳离子氢氧化物作为来自第一碱基产生室的流出物除去。 合适的阳离子源包括盐溶液,阳离子氢氧化物溶液或阳离子交换树脂。

    GRAPH-BASED TRANSFER LEARNING
    124.
    发明申请
    GRAPH-BASED TRANSFER LEARNING 审中-公开
    基于图形的传输学习

    公开(公告)号:US20130013540A1

    公开(公告)日:2013-01-10

    申请号:US13619142

    申请日:2012-09-14

    CPC classification number: G06N99/005

    Abstract: Transfer learning is the task of leveraging the information from labeled examples in some domains to predict the labels for examples in another domain. It finds abundant practical applications, such as sentiment prediction, image classification and network intrusion detection. A graph-based transfer learning framework propagates label information from a source domain to a target domain via the example-feature-example tripartite graph, and puts more emphasis on the labeled examples from the target domain via the example-example bipartite graph. An iterative algorithm renders the framework scalable to large-scale applications. The framework propagates the label information to both features irrelevant to the source domain and unlabeled examples in the target domain via common features in a principled way.

    Abstract translation: 转移学习是利用来自某些领域的标记示例的信息来预测另一个域中的示例的标签的任务。 发现情绪预测,图像分类和网络入侵检测等丰富的实际应用。 基于图形的传输学习框架通过示例特征示例三方图将标签信息从源域传播到目标域,并通过示例性的二分图更加强调来自目标域的标记示例。 迭代算法使框架可扩展到大规模应用程序。 该框架通过原理方式的共同特征将标签信息传播到与源域无关的特征和目标域中的未标记示例。

    Device Abstraction in Autonomous Wireless Local Area Networks

    公开(公告)号:US20130007233A1

    公开(公告)日:2013-01-03

    申请号:US13174294

    申请日:2011-06-30

    Abstract: According to embodiments of the present disclosure, a managed network device assigns to itself an IP address, in absence of a DHCP service, in a link local address space within a wireless network. The system further responds to a network frame received from another device based on the assigned IP address in the link local address space. The network frame can be a network traffic frame, a control path frame, and/or a management frame. The control path frame comprises a source IP address and a destination IP address that correspond to internal IP addresses in the link local address space that are self-assigned by managed network devices. The management frame comprises the self-assigned internal IP address for the managed network device, and provides for management of managed network devices in the wireless network through a single IP address when a virtual controller is configured for the wireless network.

    SYSTEM AND METHOD FOR DOMAIN ADAPTION WITH PARTIAL OBSERVATION
    128.
    发明申请
    SYSTEM AND METHOD FOR DOMAIN ADAPTION WITH PARTIAL OBSERVATION 有权
    用于局部观察的域适应的系统和方法

    公开(公告)号:US20120185415A1

    公开(公告)日:2012-07-19

    申请号:US13006245

    申请日:2011-01-13

    CPC classification number: G06N99/005 G06F17/3071

    Abstract: System, method and computer program product provides a novel domain adaption/transfer learning approach applied to the problem of classifying abbreviated documents, e.g., short text messages, instant messages, tweets. The proposed method uses a large number of multi-labeled examples (source domain) to improve the learning on the partial observations (target domain). Specifically, a hidden, higher-level abstraction space is learned that is meaningful for the multi-labeled examples in the source domain. This is done by simultaneously minimizing the document reconstruction error and the error in a classification model learned in the hidden space using known labels from the source domain. The partial observations in the target space are then mapped to the same hidden space, and classified into the label space determined by the source domain. Exemplary results provided for a Twitter dataset demonstrate that the method identifies meaningful hidden topics and provides useful classifications of specific tweets.

    Abstract translation: 系统,方法和计算机程序产品提供了一种新颖的域适应/转移学习方法,其应用于对简短文档进行分类的问题,例如短文本消息,即时消息,推文。 所提出的方法使用大量多标记示例(源域)来改善部分观察(目标域)上的学习。 具体来说,学习一个隐藏的,更高级别的抽象空间,这对于源域中的多标签示例是有意义的。 这是通过使用来自源域的已知标签在隐藏空间中学习的分类模型中同时最小化文档重建错误和错误来完成的。 然后将目标空间中的部分观察值映射到相同的隐藏空间,并将其分类为由源域确定的标签空间。 为Twitter数据集提供的示例性结果表明该方法识别有意义的隐藏主题,并提供特定推文的有用分类。

    EXTRACTION OF ATTRIBUTES AND VALUES FROM NATURAL LANGUAGE DOCUMENTS
    129.
    发明申请
    EXTRACTION OF ATTRIBUTES AND VALUES FROM NATURAL LANGUAGE DOCUMENTS 有权
    从自然语言文件中提取属性和价值

    公开(公告)号:US20120036100A1

    公开(公告)日:2012-02-09

    申请号:US13197906

    申请日:2011-08-04

    CPC classification number: G06F17/27 G06F17/2745

    Abstract: One or more classification algorithms are applied to at least one natural language document in order to extract both attributes and values of a given product. Supervised classification algorithms, semi-supervised classification algorithms, unsupervised classification algorithms or combinations of such classification algorithms may be employed for this purpose. The at least one natural language document may be obtained via a public communication network. Two or more attributes (or two or more values) thus identified may be merged to form one or more attribute phrases or value phrases. Once attributes and values have been extracted in this manner, association or linking operations may be performed to establish attribute-value pairs that are descriptive of the product. In a presently preferred embodiment, an (unsupervised) algorithm is used to generate seed attributes and values which can then support a supervised or semi-supervised classification algorithm.

    Abstract translation: 一个或多个分类算法被应用于至少一个自然语言文档,以便提取给定产品的属性和值。 为此,可以采用监督分类算法,半监督分类算法,无监督分类算法或这种分类算法的组合。 可以经由公共通信网络获得至少一个自然语言文档。 如此识别的两个或多个属性(或两个或多个值)可以被合并以形成一个或多个属性短语或值短语。 一旦以这种方式提取了属性和值,就可以执行关联或链接操作来建立描述产品的属性值对。 在当前优选的实施例中,(无监督)算法用于生成种子属性和值,然后可以支持受监督或半监督分类算法。

    Graph-based transfer learning
    130.
    发明申请
    Graph-based transfer learning 审中-公开
    基于图形的传输学习

    公开(公告)号:US20110320387A1

    公开(公告)日:2011-12-29

    申请号:US12938063

    申请日:2010-11-02

    CPC classification number: G06N20/00

    Abstract: Transfer learning is the task of leveraging the information from labeled examples in some domains to predict the labels for examples in another domain. It finds abundant practical applications, such as sentiment prediction, image classification and network intrusion detection. A graph-based transfer learning framework propagates label information from a source domain to a target domain via the example-feature-example tripartite graph, and puts more emphasis on the labeled examples from the target domain via the example-example bipartite graph. An iterative algorithm renders the framework scalable to large-scale applications. The framework propagates the label information to both features irrelevant to the source domain and unlabeled examples in the target domain via common features in a principled way.

    Abstract translation: 转移学习是利用来自某些领域的标记示例的信息来预测另一个域中的示例的标签的任务。 发现情绪预测,图像分类和网络入侵检测等丰富的实际应用。 基于图形的传输学习框架通过示例特征示例三方图将标签信息从源域传播到目标域,并通过示例性的二分图更加强调来自目标域的标记示例。 迭代算法使框架可扩展到大规模应用程序。 该框架通过原理方式的共同特征将标签信息传播到与源域无关的特征和目标域中的未标记示例。

Patent Agency Ranking