Abstract:
The present invention relates to the chemical digestion of keratin, such as avian feathers and wool. The digestion product is made by heating the feathers or wool with a solvent selected from glycols, alkanolamines, polyamines, and combinations thereof. The resulting digested keratin product is a keratin-derived polyol useful for making polymeric materials such as polyurethanes. The digestion products provide a sustainable alternative to petrochemical based intermediates.
Abstract:
A process of making a polyurethane or polyisocyanurate foam comprises the step of mixing under low pressure: (A) An isocyanate; (B) A compound reactive with the isocyanate, e.g., a polyol; (C) A liquid blowing agent; and (D) Carbon dioxide.
Abstract:
The present invention relates to composition for the preparation of a polymeric foam with improved thermal properties, to a polymeric foam obtainable therefrom, and to a method for preparing such a polymeric foam each for them comprising (i) an at least essentially amorphous polymer resin and (ii) a nucleating agent. The at least essentially amorphous polymer resin is preferably polystyrene. The nucleating agent is preferably selected from the group consisting of 1,3:2,4-bis-(benzylidene)-sorbitol derivates and mixtures thereof, and is preferably 1,3:2,4-bis-O-(4-methylbenzylidene)-D-sorbitol, 1,3:2,4-bis-(3,4-Dimethylbenzylidene)-sorbitol and 1,3:2,4-bis-(4-propylbenzylidene)-propyl sorbitol.
Abstract:
Embodiments of the present disclosure are directed towards a flame retardant foam formulation. As an example, the flame retardant formulation can include a mono-phosphonate having a hydroxyl group, a polyisocyanate having a functionality in a range from 2.0 to 10.0, wherein the polyisocyanate is present in an amount to provide for an isocyanate index of from 100 to 320, a compound having active hydrogen groups capable of reacting with the polyisocyanate, a blowing agent, and a catalyst.
Abstract:
A method of forming an element to float at least partially on a surface of an at least partially liquid hydrocarbon mixture. The method includes mixing a polymer resin and a foaming agent together in preselected proportions to provide a material mixture, and heating the material mixture, to at least partially liquefy it. The material mixture is injected into a mold cavity configured to define the element's exterior surface in a series of at least three steps, commencing with an initial step. In each step, the material mixture is injected over a predetermined time period at a predetermined velocity and under a predetermined pressure. Each predetermined velocity in the steps following the initial step is less than the predetermined velocity in an immediately preceding step thereof. Each predetermined pressure in the steps following the initial step is less than the predetermined pressure in the immediately preceding step thereof.
Abstract:
Disclosed herein is a multicomponent system comprising at least two separate components A and B, component A containing an alkoxysilane-terminated prepolymer and component B containing a mixture comprising a component B1 containing water and a component B2 containing a polyol having at least two OH-groups and a molar mass from >62 to 20% by weight to
Abstract:
The present invention relates to a concentrated polymeric composition which comprises: a) vinyl aromatic polymers and/or copolymers in an amount ranging from 10% to 90% by weight, calculated with respect to the overall composition, with respect to the overall composition, b) at least one compound containing epoxy functional groups in an amount ranging from 0.01% to 5% by weight, calculated with respect to the overall composition, with respect to the overall composition, c) at least one infrared absorbing agent, in an amount ranging from 10% to 90% by weight, calculated with respect to the overall composition, with respect to the overall composition.
Abstract:
Nanodispersions of inorganic clays in isocyanate may be created via pre-exfoliation, delamination, or both of the clay and subsequent mixing with isocyanate. In an embodiment, such an isocyanate nanodispersion is reacted with an isocyanate-reactive material or substrate to form a polyurethane nanocomposite.
Abstract:
Phenolic closed-cell foam comprises a hydrocarbon blowing agent and includes an alkali metal silicate in an amount of at least 1% by weight. The foam has an aged thermal conductivity as determined by the procedures of EN13166:2008 of less than 0.025 W/m·K. The foam is formed from a phenolic resole resin mixture having a water content of greater than 15% by weight but less than 24% by weight.
Abstract:
Foams for filling cavities and crevasses and for forming foamed products are provided. The latex foam may include an A-side containing a functionalized latex and a B-side that contains a crosslinking agent and optionally a non-functionalized latex. The A- and/or B-side contain a blowing agent package or components forming the blowing agent package. The blowing agent package may be the combination of two or more chemicals that when mixed together form a gas or a chemical compound that, when activated by heat or light, forms a gas. In an alternate embodiment, the latex foam includes a functionalized latex, an acid, and an encapsulated crosslinking agent and base. Alternatively, the spray latex foam may include a functionalized latex, a crosslinking agent, and an encapsulated dry acid and dry base. The encapsulating agent may be a protective, non-reactive shell that can be broken or melted at the time of application.