Abstract:
Devices formed of or including biocompatible polyhydroxyalkanoates are provided with controlled degradation rates, preferably less than one year under physiological conditions. Preferred devices include sutures, suture fasteners, meniscus repair devices, rivets, tacks, staples, screws (including interference screws), bone plates and bone plating systems, surgical mesh, repair patches, slings, cardiovascular patches, orthopedic pins (including bone filling augmentation material), adhesion barriers, stents, guided tissue repair/regeneration devices, articular cartilage repair devices, nerve guides, tendon repair devices, atrial septal defect repair devices, pericardial patches, bulking and filling agents, vein valves, bone marrow scaffolds, meniscus regeneration devices, ligament and tendon grafts, ocular cell implants, spinal fusion cages, skin substitutes, dural substitutes, bone graft substitutes, bone dowels, wound dressings, and hemostats. The polyhydroxyalkanoates can contain additives, be formed of mixtures of monomers or include pendant groups or modifications in their backbones, or can be chemically modified, all to alter the degradation rates. The polyhydroxyalkanoate compositions also provide favorable mechanical properties, biocompatibility, and degradation times within desirable time frames under physiological conditions.
Abstract:
The present invention provides a process for producing porous polymer materials. In the present invention, a polymer material and a soluble material are mixed in their solid states. The surface of the polymer material is partially dissolved and fused by introducing a solvent. The present invention makes use of a pressure difference while introducing a non-solvent into the polymer material to solidify and resolve the solved polymer material. Then, a substantial amount of water is used to wash the inside soluble material out. Therefore, the porous polymer materials with high porosity and interconnecting pores inside the materials are produced massively and rapidly.
Abstract:
A porous polysulfone membrane and process for the preparation of porous polysulfone media suitable for use in filtration comprises blending polysulfone with a particulate solid or with said particulate solid and a second polymer, extruding the resultant blend to form an article and leaching the particulate solid and second polymer from the article.
Abstract:
Disclosed herein are microporous polybenzimidazole articles prepared by the addition of a leachable additive to a polybenzimidazole polymer solution or dope and the subsequent leaching of the additive from the polybenzimidazole article. The microporous polybenzimidazole article may be formed into filaments or films. The micropores of the microporous polybenzimidazole article may be filled with an absorbent resin which will act to absorb chemicals or other harmful products. The microporous polybenzimidazole article with absorbent material may be formed into clothing which is highly resistant to both chemicals and heat.
Abstract:
A method of making a microporous elastomeric material having interconnected cavities and which may be used in an ink dispensing article is provided wherein such material is made by the steps of, admixing particles of hydrated magnesium sulfate in an elastomeric matrix material, curing the elastomeric matrix material and simultaneously causing liberation of water of crystallization from the hydrated magnesium sulfate which provides a blowing effect resulting in the formation of interconnecting passages between the particles, and leaching the particles from the matrix material, the leaching being achieved in an accelerated manner due to the interconnecting passages.