Abstract:
Disclosed is an apparatus and method for controlling a reciprocating compressor capable of inexpensively and exactly controlling a position of a piston in a cylinder, by which a top clearance is minimized according to the information of a phase difference between a square wave of a piston stroke and a square wave of a current supplied to the compressor. The apparatus comprises a driving section for driving the reciprocating compressor by varying an angle or ignition in response to a control signal; a current phase detecting section for outputting a square wave corresponding to the detected current supplied to the compressor; a stroke phase detecting section for outputting a square wave corresponding to a stroke of the compressor; and a control section for controlling the angle of ignition of the driving section according to the phase difference between the square wave produced from the current phase detecting section and the square wave produced from the stroke phase detecting section.
Abstract:
A drive circuit (18) produces a drive signal having a waveform of a predetermined waveform shape for a device (10) having a piezoelectric actuator (14). The drive circuit (14) includes a memory (140) which stores waveform shape data which is utilized by the drive circuit in producing the drive signal. The drive circuit utilizes the waveform shape data so that, for each of plural points comprising a period of the waveform, the drive signal has an appropriate amplitude for the predetermined waveform shape. The waveform shape data has preferably been prepared to optimize one or more operational parameter(s) of the device. Preferably the waveform shape data has been prepared by solving a waveform equation, the waveform equation having coefficients determined to optimize at least one operational parameter of the device. The number of coefficients determined for the waveform equation depends on the number of harmonics of the waveform that are within a bandwidth of the device. Other aspects concerns devices which utilize the drive circuit, methods for operating devices, the memory (212) which is utilized by the drive circuit (e.g., the drive circuit which produces the drive signal for the device having the piezoelectric actuator) to store the waveform shape data, as well as apparatus and method for generating the optimized waveform shape data.
Abstract:
A fluid pumping system can be operated in dual control modes: as a syringe pump for nano-flow solvent delivery; and as a reciprocating pump for micro- and analytical flow solvent delivery. The fluid pumping system is also operated in a closed-loop digital control process using an optical encoder for piston refill stroke begin and end synchronization with a switching valve On and Off. A multidimensional apparatus and procedure using up to 8 of the invented fluid pumps for a fully automated procedure such as ICA™ chemistry for cellular protein separation, identification and quantification.
Abstract:
A pressure exchanger system having at least two tubular chambers, in which a plurality of reversing valves reverse the flow paths of fluid flows through the at least two tubular chambers. At least one driven reversing valve alternately reverses the flow paths between a supply source, which supplies a high-energy high-pressure fluid, and the tubular chambers. In reversing the liquid flows and shutting off previously open flow paths, the driven reversing element in the reversing valve executes a discontinuous or variable movement sequence.
Abstract:
An apparatus and method for controlling operations of a reciprocating compressor are disclosed. The apparatus includes a compressor control factor detecting unit for detecting a compressor control factor to detect a stroke value corresponding to a point where TDC (Top Dead Center)≈0 on the basis of a stroke estimate value of a reciprocating compressor and values of a current and a voltage applied to a motor of the reciprocating compressor; a stroke reference value determining unit for determining a stroke reference value on the basis of the detected compressor control factor; and a controller for varying a voltage applied to the reciprocating compressor according to the determined stroke reference value.
Abstract:
A stationary arranged sensor (4) is provided in the region of one of the dead centers of the piston movement to monitor the position of the path of motion of a piston (1) relative to a cylinder (2) whereby the sensor (4) measures the lateral distance (a) to an indicator unit (6) arranged on the piston (1). The sensor (4) is arranged in a recessed position relative to the inner surface of the cylinder (2) and is sealed toward the cylinder chamber (9) by means of a cover (8), and the indicator unit (6) on the piston (1) is designed as an anomaly (10) that is non-sensitive to contaminating deposits in the area of the face (11) of the piston (1).
Abstract:
A vibration dampening system for a reciprocating compressor with a linear motor of the type comprising a motor-compressor assembly having a reference assembly (20) formed by a motor and a cylinder (4) and mounted inside a shell (1) and a resonant assembly (10) formed by a resonant spring (3) and a piston (2) reciprocating inside the cylinder (4), said system comprising at least one first balancing means (30) connecting the reference assembly (20) to the shell (1), and at least one second balancing means (40) connecting the resonant assembly (10) to the shell (1), both balancing means (30, 40) actuating according to the displacement direction of the piston (2), said second balancing means (40) presenting a coefficient of elasticity proportional to the coefficient of elasticity of the first balancing means (30), by a factor defined by the ratio of the masses of the resonant assembly (10) and of the reference assembly (20), respectively.
Abstract:
Device and method for controlling a piston position in a linear compressor, having a power source, a triac, and a motor, the device including a current phase detecting part for detecting a current switched at the triac, integrating the current, and generating a first square wave corresponding to the integrated current, a stroke phase detecting part for generating an AC voltage waveform having a fixed frequency and varied amplitude according to a piston reciprocation position following motor operation, and generating a second square wave corresponding to the AC voltage waveform, a zero cross detecting part for detecting a zero crossing of the voltage supplied from the power source, and a controlling part for generating a signal for controlling a piston position according to a phase difference of the first square wave detected at the current phase detecting part and the second square wave detected at the stroke phase detecting part, thereby making an efficiency and a reliability the best by controlling a piston position in a cylinder such that a top clearance becomes a minimum according to a phase difference of a current square wave and stroke square wave.
Abstract:
An aircraft fluid delivery device (10) including a piston assembly (20), a pilot assembly (22), and a control assembly (24). The control assembly (24) includes non-contact proximity sensors (S1, S2) that sense the position of the piston (28) and a controller (80) that controls the pilot assembly (22), and thus the piston assembly (20), based on information received from the sensors (S1,S2). Specifically, the controller (80) energizes a solenoid (72) to cause fluid to flow through the pilot assembly (22) into a large portion of the piston chamber (30) during the compression stroke of the piston (28). When the solenoid (72) is deenergized during the return stroke of the piston (28), or when the delivery device is electrically turned off, an ejector (60) in the pilot assembly (22) generates a vacuum on the pressure side of the wide portion of the piston chamber (30).
Abstract:
An apparatus for controlling an operation of a linear compressor includes: a sensorless circuit unit for detecting a current and a voltage applied to a linear compressor and outputting a work operation value corresponding to them; a stroke controller for receiving the work operation value and outputting a switching control signal corresponding to a variation amount of the work operation value; and an electric circuit unit for receiving the switching control signal from the stroke controller and outputting a certain voltage to the linear compressor, accordingly, a TDC of the piston in consideration of an error due to the nonlinear characteristic can be controlled, and thus, an operation efficiency of the linear compressor can be improved.