Abstract:
A liquid crystal device comprises a first and second cell wall structure; at least one liquid crystal material disposed within a space between the first and second cell wall structures; and polymer micro-structures, wherein the micro-structures are formed by polymerizing a prepolymer, and wherein said micro-structures have a shape and spatial location determined by said liquid crystal material. Permanent polymer micro-structures are formed from a liquid crystal with a non-uniform spatially modulated director field. The polymer structures have the shape and spatial location dictated by the non-uniform director field of the liquid crystal. The micro-structures are a backbone that restores the liquid crystal director field that existed during the polymerization process even when other factors, such as electric field, temperature, or surface anchoring, do not favor this restoration. The polymer micro-structures can be used in optical devices, such as diffraction gratings and deflecting and beam steering devices, and in micro-mechanical and micro-fluidic devices.
Abstract:
An integrated-optic attenuator/equalizer device comprising a photorefractive substrate, at least one optical waveguide channel formed in the substrate, at least one diffractive-Bragg grating formed in the substrate, and a diffractive-Bragg grating modulator that is capable of modulating the diffractive Bragg grating(s). The diffractive-Bragg grating(s) intersects the optical waveguide channel. When a diffractive-Bragg grating formed in the substrate is modulated, at least a fraction of light of a wavelength associated with the modulated diffractive-Bragg grating is re-directed by the modulated diffractive-Bragg grating, thereby preventing the re-directed fraction of light from arriving at the output of the optical waveguide channel. Multiple diffractive-Bragg gratings may be implemented in the integrated-optic device, each having a particular wavelength associated therewith, and the diffractive-Bragg gratings may be simultaneously or independently modulated to control the fractions of light of different wavelengths that arrive at the output of the optical waveguide channel.
Abstract:
A new photopolymerizable material allows single-step, fast recording of volume holograms with properties that can be electrically controlled. Polymer-dispersed liquid crystals (PDLCs) in accordance with the invention preferably comprise a homogeneous mixture of a nematic liquid crystal and a multifunctional pentaacrylate monomer in combination with photoinitiator, coinitiator and cross-linking agent. Optionally, a surfactant such as octancic acid may also be added. The PDLC material is exposed to coherent light to produce an interference pattern inside the material. Photopolymerization of the new PDLC material produces a hologram of clearly separated liquid crystal domains and cured polymer domains. Volume transmission gratings made with the new PDLC material can be electrically switched between nearly 100% diffraction efficiency and nearly 0% diffraction efficiency. By increasing the frequency of the switching voltage, switching voltages in the range of 50 Vrms can be achieved. The optional use of a surfactant allows low switching voltages at lower frequencies than without a surfactant. In an alternative embodiment, a PDLC material in accordance with the invention can be utilized to form reflection gratings, including switchable reflection gratings. In still further embodiments, a PDLC material in accordance with the invention can be used to form switchable subwavelength gratings. By further processing, static transmission, reflection, and subwavelength PDLC materials can be formed. In addition, PDLC materials in accordance with the present invention can be used to form switchable slanted transmission gratings suitable for switchable optical coupling and reconfigurable optical interconnects.
Abstract:
Optical system (200), which controls interference pattern (150) of combined grating (100), by controlling different illuminations of beams (132, 134) on grating. Optical fiber (202) guides and emits used in optical communication. Information carrier beam used in optical communication. Information carrier beam used in optical communication. Reflector (206) receives beam and reflects beams toward attenuator (208), which transmits beam toward transparent blcok (104). Beam enters block without direction change and propagates in block toward grating layer and grating.
Abstract:
A thermally wavelength tunable laser includes a core, the core including more than one diffraction grating, and thermo-optical material adjacent to each diffraction grating. By selectively changing the temperature and hence the refractive index in the thermo-optical material adjacent to a chosen diffraction grating, the chosen diffraction grating can be tuned over a selected wavelength range. By selecting different diffraction gratings, different, non-overlapping wavelength ranges can be selected and the laser can be tuned over a broad range of wavelengths.
Abstract:
A variable optical modulator for optical communication systems using a tunable dynamic grating comprises a gel or membrane layer attached adjacent to a prism communicating light to/from the optical communication system. A substrate has a plurality of individually addressable electrodes and drive means for providing regulated excitation voltage to each of the plurality of electrodes, thereby generating a wave pattern on a surface of the gel or membrane superimposed on an initial state of the gel or membrane layer.
Abstract:
An optical switch is provided in which a cell comprised of photopolymer dispersed in a liquid crystal sandwiched between two transparent plates is first recorded with a grating utilizing two plane wave laser beams interacting at an angle. This grating is permanently established in the cell such that when the cell is illuminated the incoming beam is diffracted in accordance with the spatial frequency of the grating. When an electric signal is applied across the cell, the refractive index of the liquid crystal matches that of the photopolymer due to the molecular orientation of the liquid crystal and no diffraction occurs because the grating formed in the liquid crystal is temporarily erased or over written. The liquid crystal cell therefore becomes transparent with the application of the electrical signal. Switching occurs by whether or not the grating is present or not, which is in turn dependent upon whether or not there is an electrical signal applied across the cell.
Abstract:
The present invention provides configurations for an electro-optically tunable filter. The filter includes an electro-optical crystal, at least one electrically conductive mesh screen, at least one electrode and a voltage source. In one embodiment, an electrical voltage passes from a source to a mesh screen contacting the crystal, through the crystal and an electrode on the crystal's opposite end. The mesh screen creates a narrow bandpass. The optical properties of the mesh screen-crystal combination are determined partially by the refractive index of the crystal when a voltage is applied to the mesh screen. Variable voltages change the refractive index of the crystal, creating varying spectral positions of the filter. Application of a voltage between the mesh screen and the electrode creates a field internal to the crystal that changes its refractive index, allowing it to be tunable in the bandpass location thereby affecting a passing light signal.
Abstract:
The specification describes optical mode converters wherein coupling is made between a fundamental, or near fundamental, propagation mode and the next, or closely adjacent, higher order mode (HOM). Both modes propagate in the core of the optical fiber, thus maintaining efficient transmission through the mode converter. Mode coupling is effected using a long period grating (LPG) and the strength of the mode coupling is dynamically varied by changing the period of the grating or by varying the propagation constants of the two modes being coupled. The period of the grating is varied by physically changing the spacing between grating elements, for example by changing the strain on the grating to physically stretch the LPG. The propagation constants of the modes can be varied using any method that changes the refractive index of the fiber containing the LPG, for example, by changing the temperature, or electrically changing the index using the electro-optic effect. In every case the two modes being coupled are core modes with high propagation efficiency.
Abstract:
A silicon oxynitride (SiON)/silicon dioxide (SiO2) optical waveguide switch with a wavelength locked feedback control loop which monitors the wavelength of UV radiation produced by a UV tunable laser diffraction grating write source which has passed through a UV bandpass filter and is then used to selectively write a diffraction grating in the optical waveguide switch. The diffraction grating structure can be switched on or off at will, resulting in an optical switch element for IR radiation traveling through the optical waveguide. This optical switch element is a basic building block which can be used for many other systems, such as optical logic gates or all-optical cross connect switches for wide area networks. Further, it may be used to selectively tap off a portion of the optical signal, for example to read header information in a data stream (or packets) which indicates the destination switch port of the optical data, without disrupting the remaining optical data.