Abstract:
A memory chip for storage and retrieval of data transmitted as streams of data at sustained peak data transfer rates. The memory chip includes a memory device and an interface capable of achieving high bandwidth throughput. The memory device decodes, arbitrates between, and executes memory access commands, and generates memory access responses. The interface includes a data path, and a number of memory controllers. The interface receives and transmits input and output data streams, and the memory controllers control the flow of the input and output data streams within the memory chip. A packet buffer is coupled between the data path and the memory device. The packet buffer provides for temporary storage of memory access commands, response information, and forwarding data.
Abstract:
A general purpose, programmable media processor for processing and transmitting a media data stream of audio, video, radio, graphics, encryption, authentication, and networking information in real-time. The media processor incorporates an execution unit that maintains substantially peak data throughout of media data streams. The execution unit includes a dynamically partionable multi-precision arithmetic unit, programmable switch and programmable extended mathematical element. A high bandwidth external interface supplies media data streams at substantially peak rates to a general purpose register file and the multi-precision execution unit. A memory management unit, and instruction and data cache/buffers are also provided. High bandwidth memory controllers are linked in series to provide a memory channel to the general purpose, programmable media processor. The general purpose, programmable media processor is disposed in a network fabric consisting of fiber optic cable, coaxial cable and twisted pair wires to transmit, process and receive single or unified media data streams. Parallel general purpose media processors are disposed throughout the network in a distributed virtual manner to allow for multi-processor operations and sharing of resources through the network. A method for receiving, processing and transmitting media data streams over the communications fabric is also provided.
Abstract:
An output buffer that controls the slew rate of its output signal is disclosed. The buffer includes a pull-up and a pull-down bipolar transistor coupled at a common output node in series between VDD and VSS. The buffer also includes a first set of parallel MOS devices coupled between the common output node and the base of the pull-down bipolar transistor. A second set of parallel MOS devices are coupled between the base of the pull-up output stage bipolar transistor and VDD. The gates of each set of MOS devices are coupled to a digital select signal. The amount of current driving the base of each of the pull-up and pull-down transistors (when they are enabled) is determined by the number of MOS devices enabled by the digital select signal. Thus, the buffer of the present invention is able to adjust the slew rate of its output signal to accommodate different loads coupled to the common output node.
Abstract:
A bias generation and distribution system in which bias potentials are generated at one main location within a logic circuit and then distributed throughout the logic circuit to MOS load devices, MOS load networks, other bias voltage conversion centers, and logic circuits is disclosed. The system generates a first bias voltage that provides a temperature compensated voltage that is utilized to bias MOS load devices and parallel MOS load networks. The first bias voltage generator includes either a reference MOS load device or a reference parallel MOS load network which determines the value of the first bias voltage. The reference MOS load network includes a switching network responsive to a first set of control signals. The first set of control signals may be adjusted to vary the value of the first bias voltage to compensate for process variations. The first bias voltage is distributed to either remote single load MOS devices or to remote parallel MOS load networks. The remote load networks also include switching networks responsive to a second set of control signals. The second set of control signals may be varied to determine the resistivity of the remote MOS load networks depending on the value of the first bias voltage. The system also generates a second temperature compensated bias voltage that is utilized along with the first bias voltage to bias remote bias conversion circuits. The remote conversion circuits generate a third bias voltage that is utilized, along with the first bias voltage, to bias remote logic gates. The first bias voltage biases the MOS resistive load of the logic gate and the third bias voltage biases the MOS current device of the logic gate. The second bias voltage generator and the remote conversion circuits are implemented with controllable switching networks so that current and logic swing adjustments of the logic gate may be performed.
Abstract:
An improvement for reducing proximity effects comprised of additional lines, referred to as intensity leveling bars, into the mask pattern. The leveling bars perform the function of adjusting the edge intensity gradients of isolated edges in the mask pattern, to match the edge intensity gradients of densely packed edges. Leveling bars are placed parallel to isolated edges such that intensity gradient leveling occurs on all isolated edges of the mask pattern. In addition, the leveling bars are designed to have a width significantly less than the resolution of the exposure tool. Therefore, leveling bars that are present in the mask pattern produce resist patterns that completely developed away when a nominal exposure energy is utilized during exposure of photoresist.
Abstract:
A method for forming a BICMOS integrated circuit having MOS field-effect devices and bipolar junction transistors formed in a silicon substrate is disclosed. The process comprises the steps of first defining separate active areas in a substrate for each of the transistors. Next, a gate dielectric layer is formed over the surface of the wafer. Above the gate dielectric, a first layer of polysilicon is deposited. This first layer of polysilicon is then selectively etched to form a plurality of first polysilicon members each of which is equally-spaced apart from one another. The polysilicon members comprise the gates of the MOS transistors and the extrinsic base contacts of the NPN transistors. After the first polysilicon members have been defined, the base regions of the NPN transistors are formed. After insulating the first polysilicon members, an additional layer of polysilicon is deposited over the substrate to replanarize the entire wafer surface. The additional layer of polysilicon is then etched to form a plurality of second polysilicon members which are electrically isolated from the first polysilicon members. Impurities are diffused from the polysilicon members into the substrate to form the source/drain regions of the MOS transistors, and the extrinsic base and emitter regions of the NPN transistors. The final processing steps include those required to the interconnection of the MOS and NPN transistors. Self-aligned interconnects are formed by patterning polysilicon, an insulative layer, And a silicide layer, using first silicide contacts over device components as etch stop.
Abstract:
An optical modulator utilizing a magnetic semiconductor device, whose operation is based on the Hall effect, includes a magnetic material formed on a semiconductor substrate. When an incoming beam of light having a dominant polarization direction is directed onto the magnetic material it becomes modulated. The result is an outgoing beam of light which has a rotated plane of polarization when compared to the dominant polarization direction. The direction of the rotated plane of polarization is indicative of the information stored in the magnetic material. The modulator of the present invention further includes a means for writing the information to the magnetic material and a semiconductor sensor means for electrically verifying the contents of the magnetic material.