Abstract:
Optoelectronic device packaging assemblies and methods of making the same are described. In one aspect, an optoelectronic device packaging assembly includes an electrical sub-mount that includes a mounting area, a device turning mount, and a light-emitting device. The device turning mount has a sub-mount mounting side that is attached to the mounting area of the electrical sub-mount and a device mounting side that has a device mounting area that is oriented in a plane that is substantially perpendicular to the mounting area of the electrical sub-mount. The light-emitting device includes one or more semiconductor layers that terminate at a common light-emitting surface and are operable to emit light from the light-emitting surface. The light-emitting device is attached to the device mounting area of the device turning mount with the light-emitting surface oriented in a plane that is substantially parallel to the mounting area of the electrical sub-mount.
Abstract:
A heat bond seaming tape has a base formed of a strip of paper or a paper-like material and an overlying strip of an open mesh material. A plurality of transversely spaced, longitudinally extending beads of a hot melt thermoplastic adhesive material is placed on a top surface of the mesh for adhering the tape to the backs of adjacent carpet edges. A strip of a rigid thermoplastic material is sandwiched between the base strip and the strip of open mesh and extends longitudinally along the center of the strip and extends transversely across the carpet seam to prevent seam buckling. The plastic strip is formed by a plurality of separate or flexibly connected hard plastic members to enable the tape to be formed into a roll for transportation and storage. The invention also relates to the method of forming the improved heat bond seaming tape.
Abstract:
A bipolar transistor having an emitter, a base, and a collector includes an intrinsic base region having narrow side areas and a wider central area. The side areas are located adjacent to the extrinsic base region, while the central area is disposed underneath the emitter. The lateral doping profile of the base is tailored so that the doping concentrations in the extrinsic region and the central area are relatively high compared to the doping concentration of the narrow side areas of the intrinsic base. The combination of the narrow side areas and the lateral base doping profile constrains the depletion region within the base thereby lowering punch-through voltage of the transistor without loss of beta.
Abstract:
A method of making an ultra compact laminar-flow heat exchanger includes forming microscopic regions along the front side of an elongated ribbon of material and spirally laminating the ribbon into a core wherein the front side abuts the backside of the ribbon, thereby forming enclosed microscopic channels.
Abstract:
A microscopic laminar-flow heat exchanger, well-suited for cooling a heat generating device such as a semiconductor integrated circuit, includes a plurality of thin plates, laminated together to form a block. Each plate has a microscopic recessed portion etched into one face of the plate and a pair of holes cut through the plate such that when the block is formed, the holes align to form a pair of coolant distribution manifolds. The manifolds are connected via the plurality of microscopic channels formed from the recessed portions during the lamination process. Coolant flow through these channels effectuates heat removal.
Abstract:
A process for faricating polysilicon resistors and polysilicon interconnects coupled to MOS field-effect devices in a silicon substrate includes the steps of depositing and etching a first polysilicon layer to form the gates of the MOS devices; then depositing a second layer of polysilicon between the gates. The second polysilicon layer is then etched so that its upper surface is substantially coplanar with the gates. Contact openings are then defined to the source, drain and gate members of the devices through an insulative layer formed over the first and second polysilicon layers. Next, a metal layer is deposited to fill the openings and is patterned to define electrical contacts to the devices. The patterning step also defines the interconnect lines in the metal layer. A third polysilicon layer is then deposited and patterned to define the polysilicon resistors and interconnects.
Abstract:
A modular system for treating wastewater is designed having different phases. In an initial phase, plural tanks are provided, including at least one reactor and digester tank. In a subsequent phase, at least one of the tanks is converted into a different type of tank, and additional new tanks are provided to accommodate larger quantities of wastewater. In one embodiment, conversion of at least one of the tanks is accomplished by removing a temporary wall from a digester tank to create another reactor tank.
Abstract:
A modular system for treating wastewater is designed having different phases. In an initial phase, plural tanks are provided, including at least one reactor and digester tank. In a subsequent phase, at least one of the tanks is converted into a different type of tank, and additional new tanks are provided to accommodate larger quantities of wastewater. In one embodiment, conversion of at least one of the tanks is accomplished by removing a temporary wall from a digester tank to create another reactor tank.
Abstract:
A microscopic laminar-flow heat exchanger, well-suited for cooling a heat generating device such as a semiconductor integrated circuit, includes a plurality of thin plates, laminated together to form a block. Each plate has a microscopic recessed portion etched into one face of the plate and a pair of holes cut through the plate such that when the block is formed, the holes align to form a pair of coolant distribution manifolds. The manifolds are connected via the plurality of microscopic channels formed from the recessed portions during the lamination process. Coolant flow through these channels effectuates heat removal.
Abstract:
A mask for transferring square and rectangular features having critical dimensions (CDs) close to the resolution limit of the exposure tool utilized to perform the transference is described. Intensity modulation lines having the opposite transparency as the rectangular feature to be transferred, and a width significantly less than the resolution of the exposure tool, are disposed within the rectangular feature. The intensity modulation lines have the affect of damping intensity levels on the resist layer in the center of the rectangular feature. As a result, the final CD measurement of the rectangular feature is within the CD tolerance of the original designed CD measurement. In addition, since modulation lines are have dimensions well below the resolution limit of the exposure tool, they are not seen in the final rectangular resist pattern.