Abstract:
According to various embodiments, a mobile device continuously and/or automatically scans a user environment for tags containing non-human-readable data. The mobile device may continuously and/or automatically scan the environment for tags without being specifically directed at a particular tag. The mobile device may be adapted to scan for audio tags, radio frequency tags, and/or image tags. The mobile device may be configured to scan for and identify tags within the user environment that satisfy a user preference. The mobile device may perform an action in response to identifying a tag that satisfies a user preference. The mobile device may be configured to scan for a wide variety of tags, including tags in the form of quick response codes, steganographic content, audio watermarks, audio outside of a human audible range, radio frequency identification tags, long wavelength identification tags, near field communication tags, and/or a Memory Spot device.
Abstract:
A motor vehicle system includes a motor vehicle including an aircraft landing portion, and an actively propelled unmanned aircraft configured to be supported on the aircraft landing portion. The vehicle and aircraft are configured such that the vehicle can provide at least one of fuel and electrical energy to the aircraft while the aircraft is supported on the aircraft landing portion.
Abstract:
Described embodiments include a real-time system, method, and apparatus. A system includes an incoming object sensor configured to be worn by a human and to acquire data indicative of a trajectory of an incoming projectile. The system includes a warning device configured to be worn by the human and to provide a notification to the human. The system includes a processing circuit configured to (i) receive the data indicative of a trajectory of the incoming projectile; (ii) predict a spatial relationship of the trajectory of the incoming projectile relative to the human; and (iii) initiate a notification by the warning device suggesting a movement by the human to evade the incoming projectile.
Abstract:
Methods and systems for monitoring compliance of a patient with a prescribed treatment regimen are described. Patient speech is detected during use of a communication system such as a mobile telephone and analyzed to determine compliance with a treatment for a brain-related disorder, for example. Speech data representing one or more patient speech pattern and an identity signal containing information used to determine presence/identity of the patient are transmitted from a circuitry-based system at the patient location to a monitoring location. Identity of the patient as user of the communication system is determined through, e.g., biometric or authentication techniques. Speech data is analyzed to determine whether a patient speech pattern matches one or more characteristic speech patterns. Outcome of the analysis is reported to a medical caregiver or other party, for example.
Abstract:
Described embodiments include a system and a method. A system includes at least two individually controllable electrochemical cells configured to output electric power. Each individually controllable cell includes an electrolyte, and a first working electrode configured to transfer electrons to or from the electrolyte. Each individually controllable cell includes a second working electrode configured to transfer electrons to or from the electrolyte. Each individually controllable cell includes a gating electrode spaced-apart from the second working electrode and configured if biased relative to the second working electrode to modify an electric charge, field, or potential in the space between the electrolyte and the second working electrode. The system includes a control circuit coupled to apply a respective biasing signal to each gating electrode of each controllable cell of the at least two controllable cells.
Abstract:
A method of manufacturing a turbine blade includes providing a core element having a base portion, a tip portion, and an intermediate portion extending between the base portion and the tip portion. The intermediate portion has a non-uniform cross-section and is a high-strength fiber material. The method also includes surrounding the core element with a shell, the volume between the core element and the shell forming a void.
Abstract:
A system for sealing a leak within a pipeline for transporting fluid includes a sealing device that is deployable to seal the leak. The sealing device includes a flexible wall formed into a substantially tubular shape defining an opening, and an internal frame coupled to the flexible wall and configured to control a movement of the flexible wall by applying a force to the flexible wall, wherein the movement of the flexible wall moves the sealing device through the pipeline. The system also includes a sensor assembly configured to monitor a pipeline condition and send a signal representing the pipeline condition, and a control module configured to receive the signal and control the force applied by the internal frame based on the signal.
Abstract:
Inter-substrate coupling and alignment using liquid droplets can include electrical and plasmon modalities. For example, a set of droplets can be placed on a bottom substrate. A top substrate can be placed upon the droplets, which uses the droplets to align the substrates. Using the droplets in a capacitive or plasmon coupling modality, information or power can be transferred between the substrates using the droplets.
Abstract:
A system for detecting the release of a chemical substance includes a release device configured to release a chemical substance into a surrounding environment based on receipt of a control signal; a signaling device configured to transmit the control signal to the release device; and a sensor device configured to detect the chemical substance in the surrounding environment based on an analysis of the surrounding environment.
Abstract:
A vehicle tire pressure control system includes a road sensor configured to acquire road data regarding a road at an advanced location ahead of a current location of a vehicle; a pressure regulator configured to control the air pressure within a tire of the vehicle during operation of the vehicle; and a controller configured to control operation of the pressure regulator and vary the air pressure within the tire based on the road data.