Abstract:
A vehicle backward movement assist device includes a vehicle path determining means for determining a path from a current position of the vehicle moved at a moving amount detected by a vehicle moving amount detecting means to a first target position or a second target position, the vehicle path determining means determining the path by repeatedly calculating the path, and a displaying means for displaying an image of a rear view from a captured by an image capturing means, the displaying means superimposing the first or second target position of the vehicle moved based upon the first or second target position and the detected moving amount on the image of the rear view from the vehicle, the second target position calculated by updating the first target position.
Abstract:
A system and method of controlling an automotive vehicle includes selecting a brake-steer mode, selecting a transfer case so that the front wheels are driven and the rear wheel are not driven and applying brake-steer to the rear wheels to reduce the turning radius of the vehicle.
Abstract:
A system for detecting objects, in particular for a motor vehicle, is proposed in which, with a radar sensor, the radar signals reflected by the object are processed for ascertaining the distance (d) and/or the relative or approach speed (Cv) of the object. The digital signals from at least one channel (I, Q) of the radar sensor are processed until a first evaluation capability is obtained as a distance signal (d) or as an approach speed signal (Cv), with which it is defined which data are ascertained and will be made available to an interface (6) between the radar sensor and a downstream control unit (7).
Abstract:
Parking assist apparatus and method cause a vehicle driver to set a target parking position in which the vehicle is to be parked by prompting the driver to specify the position of a parking space frame in the screen of a touch display by touch-operating arrow button switches shown in the screen, and then calculate a path to the target parking position. If a path to the target parking position is not generated by calculation, the arrow button switches for moving the parking space frame in such directions that a path will not be generated (i.e., the vehicle cannot be parked), among all the arrow button switches, are made non-displayed or are displayed dimmer than the other arrow button switches, and are disabled.
Abstract:
In a driving operation assisting technique, the burden on a user is reduced. The user is allowed to specify, on an image representing the surrounding conditions around a vehicle, the end position of the vehicle at the end of a predetermined driving operation by using, for example, a pointer. A driving operation assisting system obtains the start position of the driving operation based on a prescribed movement pattern representing the movement of the vehicle in the driving operation, and superimposes the end position on the display image.
Abstract:
A capacitance device includes a dielectric film, the first electrode and the second electrode. One of the two electrodes is divided into a plurality of electrode portions. Each of the divided electrode portions is connected with each other through switching transistors so that appropriate portions contributing to the capacitance can be selected. The device can vary its capacitance with high accuracy.
Abstract:
A method for the assisted steering, particularly the assisted maneuvering and parking, of a motor vehicle which includes determining a nominal driving path (X) with a starting point (S) and a destination point (Wnominal); providing an output of the nominal driving path (X), and setting the motor vehicle in motion. An actual position (W1) of the motor vehicle is determined, wherein a deviant circular arc (KA) traveled as well as a first (K1) and a second (K2) corrective circular arc are determined if the actual position (W1) deviates from the nominal driving path (X). The second corrective circular arc (K2) is a congruent projection of the deviant circular arc (KA) and ends at the destination point (Wnominal). A corrected nominal driving path (K1, K2) is provided as an output.
Abstract:
An obstacle detection device includes: an obstacle detection section (11) for emitting beams having a predetermined divergence angle consecutively in a plurality of different directions, receiving a reflected wave from an obstacle for each direction, and detecting the obstacle existing within an emission angle range of the beam for the direction; a distance calculation section (12) for calculating a distance representative of an interspace between the obstacle and the vehicle for each direction based on a received signal of the reflected wave for the direction outputted from the obstacle detection section; an obstacle image creation section (14) for creating, as an obstacle image, a figure two-dimensionally developed in the emission angle range of the beam emitted in each direction while treating, as a basis for image creation, the distance calculated by the distance calculation section for the direction, and for creating and outputting image data for displaying the obstacle image; and a display section (15) for receiving the image data created by the obstacle image creation section and displaying an image showing a positional relationship between the obstacle and the vehicle.
Abstract:
A system and method of controlling an automotive vehicle includes determining a forward direction and reverse direction of the vehicle and applying brake-steer in a forward position as a function of a first threshold and applying brake-steer in the reverse position as a function of a second threshold different than the first threshold.
Abstract:
A method for operating a parking assistance system and a parking assistance system for a vehicle, is characterized by the following steps: a) determination of the length and/or width of a parking space when passing the parking space; b) determination of at least one feasible parking process for the vehicle for entering into or exiting the parking space; c) instructing the driver as to which direction the vehicle shall be moved and how far the steering wheel must be turned, and d) automatic braking and/or acceleration of the vehicle during the parking process into or out of a parking space, wherein steps c) and d) can be effected in any order, one after the other and/or at the same time.