Abstract:
A hybrid silicon-on-silicon substrate. A thin film (2101) of single-crystal silicon is bonded to a target wafer (46). A high-quality bond is formed between the thin film and the target wafer during a high-temperature annealing process. It is believed that the high-temperature annealing process forms covalent bonds between the layers at the interface (2305). The resulting hybrid wafer is suitable for use in integrated circuit manufacturing processes, similar to wafers with an epitaxial layer.
Abstract:
Articles having a component with a surface defining microstructured features can be formed using thermal transfer elements. One example of a suitable thermal transfer element includes a microstructured layer having a surface defining microstructured features imposed on the microstructured layer. The thermal transfer element is configured and arranged for the transfer of at least a portion of the microstructured layer to a receptor while substantially preserving the microstructured features of that portion.
Abstract:
A method of making a micro electromechanical gyroscope. A cantilevered beam structure, first portions of side drive electrodes and a mating structure are defined on a first substrate or wafer; and at least one contact structure, second portions of the side drive electrodes and a mating structure are defined on a second substrate or wafer, the mating structure on the second substrate or wafer being of a complementary shape to the mating structure on the first substrate or wafer and the first and second portions of the side drive electrodes being of a complementary shape to each other. A bonding layer, preferably a eutectic bonding layer, is provided on at least one of the mating structures and one or the first and second portions of the side drive electrodes. The mating structure of the first substrate is moved into a confronting relationship with the mating structure of the second substrate or wafer. Pressure is applied between the two substrates so as to cause a bond to occur between the two mating structures at the bonding or eutectic layer and also between the first and second portions of the side drive electrodes to cause a bond to occur therebetween. Then the first substrate or wafer is removed to free the cantilevered beam structure for movement relative to the second substrate or wafer. The bonds are preferably eutectic bonds.
Abstract:
A technique for forming a film of material (12) from a donor substrate (10). The technique has a step of forming a weakened region in a selected manner at a selected depth (20) underneath the surface. An energy source is directed to a selected region of the donor substrate to initiate a controlled cleaving action of the substrate (10) at the selected depth (20), whereupon the cleaving action provides an expanding cleave front to free the donor material from a remaining portion of the donor substrate.
Abstract:
A technique for forming a film of material (12) from a donor substrate (10). The technique has a step of introducing energetic particles (22) through a surface of a donor substrate (10) to a selected depth (20) underneath the surface, where the particles have a relatively high concentration to define a donor substrate material (12) above the selected depth. An energy source is directed to a selected region of the donor substrate to initiate a controlled cleaving action of the substrate (10) at the selected depth (20), whereupon the cleaving action provides an expanding cleave front to free the donor material from a remaining portion of the donor substrate.
Abstract:
An economical hybrid wafer utilizing a lower-quality, lower cost transfer substrate to support a higher-quality thin film. A high-quality thin film (2101) is separated from a donor wafer (2100) and bonded to a transfer, or target, substrate (46). The donor wafer is preferably single-crystal silicon optimized for device fabrication, while the transfer substrate provides mechanical support. The thin film is not grown on the transfer substrate, and thus defects in the transfer substrate are not grown into the thin film. A low-temperature bonding process can provide an abrupt junction between the target wafer and the thin film.
Abstract:
A technique for forming films of material (14) from a donor substrate (10). The technique has a step of introducing gas-forming particles (12) through a surface of a donor substrate (10) to a selected depth underneath the surface. The gas-forming particles form a layer of microbubbles within the substrate. A global heat treatment of the substrate then creates a pressure effect to separate a thin film of material from the substrate. Additional gas-forming particles are introduced into the donor substrate and a second thin film of material is then separated from the donor substrate. In a specific embodiment, the gas-forming particles are implanted using a plasma immersion ion implantation method.
Abstract:
A technique for forming a film of material (12) from a donor substrate (10). The technique has a step of forming a stressed region in a selected manner at a selected depth (20) underneath the surface. An energy source such as pressurized fluid is directed to a selected region of the donor substrate to initiate a controlled cleaving action of the substrate (10) at the selected depth (20), whereupon the cleaving action provides an expanding cleave front to free the donor material from a remaining portion of the donor substrate.
Abstract:
A semiconductor accelerometer is formed by attaching a semiconductor layer to a handle wafer by a thick oxide layer. Accelerometer geometry is patterned in the semiconductor layer, which is then used as a mask to etch out a cavity in the underlying thick oxide. The mask may include one or more apertures, so that a mass region will have corresponding apertures to the underlying oxide layer. The structure resulting from an oxide etch has the intended accelerometer geometry of a large volume mass region supported in cantilever fashion by a plurality of piezo-resistive arm regions to a surrounding, supporting portion of the semiconductor layer. Directly beneath this accelerometer geometry is a flex-accommodating cavity realized by the removal of the underlying oxide layer. The semiconductor layer remains attached to the handle wafer by means of the thick oxide layer that surrounds the accelerometer geometry, and which was adequately masked by the surrounding portion of the top semiconductor layer during the oxide etch step. In a second embodiment support arm regions are dimensioned separately from the mass region, using a plurality of buried oxide regions as semiconductor etch stops.