Abstract:
An adjusting system of a motor vehicle for the adjustment of a closing part is disclosed. The system includesa first and second casing extending oblong in a length-wise direction. The second casing has a smaller cross section than the first casing and is arranged within the first casing to be adjustable in a length-wise direction. A spindle for the relative adjustment of a first casing to the second casing is included and arranged within either or both of the first and second casings.The system also includes an electromotor and a transmission connected with either or both of the spindle and second casing. In addition, at least one spring is arranged within either or both of the first and second casings and operates length-wise, such that one of the casings is attached on the side of the motor vehicle body and another of the casings is attached to the closing side.
Abstract:
A door actuating system has a fractional horsepower motor mounted on the door adjacent its free edge, driving a clutch connected to a duplex capstan pulley that is wrapped by two tensioned flexible static lines, for opening/closing movement ‘along the line’. The motor also drives a gear that engages a rack projecting from the door frame, to displace the door relative to its frame. Rotation of the gear is read by a rotary encoder, which feeds a microprocessor, to continuously monitor the location, speed and direction of motion of the door, for both the ‘on’ and the ‘off’ condition of the electric motor. A latching clip over-rides action of the original door latch.
Abstract:
The invention relates to an electomagnetic frictionally engaged clutch (1) provided with a rotor part (4) comprising a friction lining (2). An electrical coil (6) and a first permanent magnet (14) are arranged on the rotor part (4). Said clutch also comprises an armature disk (10) which is connected to a second shaft (9) and can be displaced in a rotationally fixed manner, but axially from a coupled end position to an uncoupled end position. The aim of the invention is to enahle the coil (6) of the clutch (1) to be current-free both in the coupled state and in the uncoupled state. To this end, means (15; 20) are provided for exerting an axial force opposing the magnetic force of the first permanent magnet (14) on the armature disk (10). The first permanent magnet (14) and the means (15; 20) are selected in such a way that the resulting force exerted on the armature disk by the permanent magnets and the means presses the armature disk (10) against the friction lining (2) of the rotor part (4) when a current is not passing through the coil (6), when the armature disk (10) is in the coupled end position thereof and when the armature disk (10) presses against an abutment (19) at an axial distance from the friction lining (2) of the rotor part (4) when it is in the uncoupled end position thereof. The electrical coil (6) can be supplied with a coil in such a way that the magnetic field thus produced
Abstract:
The present invention provides an automatic door control system that includes a door, a control module assembly, and a drive train assembly. The control module assembly is coupled to the door. The drive train assembly is coupled to the control module assembly, where the drive train assembly is configured to receive a signal from the control module assembly to easily move the door, where the drive train assembly exerts a force to move the door.
Abstract:
A drive arrangement is provided for motorized pivotal movement of a vehicle door. The drive has a self-locking motor unit, a gear connected downstream of the motor unit for producing linear drive movement, and a clutch connected therebetween. The clutch can be moved into an engaged state in which the motor unit for nominal operation is engaged to the vehicle door. When the motor unit is turned off, manual movement of the vehicle door is blocked. The clutch can be moved into a released state in which the motor unit is separated from the vehicle door in terms of drive engineering. The clutch can be moved into the intermediate engaged state with reduced transmission moment and force so that the vehicle door is kept in its current position at any time by self-locking of the motor unit, but can be moved by manual actuation with a minimum actuation force.
Abstract:
An opening and closing apparatus for an opening and closing body of a vehicle. The opening and closing apparatus includes a reciprocating member connected at its connecting portion to a motor so as to be moved to reciprocate along a plane perpendicular to a hinge shaft, the reciprocating member having a side surface parallel with the plane perpendicular to the hinge shaft. A connecting member is provided having a first end section pivotally attached to an end portion of the reciprocating member, and a second end section fixed to the opening and closing body. A deflection-suppressing device is provided to a stationary body connected to the vehicle body. A part of the side surface of the reciprocating member is slidably contacted with the deflection-suppressing device and is located between the connecting portion of the reciprocating member and the connecting member.
Abstract:
The present invention provides an automatic door control system that includes a door, a control module assembly, and a drive train assembly. The control module assembly is coupled to the door. The drive train assembly is coupled to the control module assembly, where the drive train assembly is configured to receive a signal from the control module assembly to easily move the door, where the drive train assembly exerts a force to move the door.
Abstract:
A power drive assembly for a rear lift gate assembly of a vehicle includes a screw drive having a screw member and a clutch supported by the screw member.
Abstract:
An electric opening/closing device for vehicle, which has good layout characteristic of the vehicle and is provided with a highly-rigid attachment part, is provided. The vehicle electric opening/closing device comprises: a worm wheel meshed with a worm provided on a motor shaft of an electric motor; a planetary gear mechanism disposed coaxially with the worm wheel and decelerating rotation of the worm wheel to transmits it to an output gear; a gear case housing the worm wheel etc. and assembled to the electric motor; and a swing arm rotatably supported by the gear case between an output end linked to a back door and an input end linked to an output gear. An attachment plate for mounting the vehicle electric opening/closing device on the vehicle is sandwiched between the first case body and the second case body which constitute the gear case.
Abstract:
An opening and closing apparatus for vehicle lid includes a lower base adapted to be mounted on a body panel of the vehicle and arranged to an opening of an inner space of the vehicle, first and second hinge links rotatably connected to the lower base at each one end of the respective first and second hinge links, an upper base attached to the vehicle lid formed for closing the opening of the inner space and connected to each the other end of the respective first and second hinge links, a motor for providing a drive to the first hinge link, a drive transmitting member provided between the motor and the first hinge link for transmitting the drive from the motor to the first hinge link, a normally section torque transmitting mechanism provided between the drive transmitting member and the first hinge link for transmitting the drive to the first hinge link at a point of force reaction through the normally section torque transmitting mechanism after the drive transmitting member is rotated with a predetermined angle while the vehicle lid in a fully-opened state is under closing operation and a close-start section torque transmitting mechanism provided between the drive transmitting member and the upper base for directly pressing the upper base at a point of force reaction through the close-start section torque transmitting mechanism that a distance from a center point of the rotation of the upper base is longer than a distance of the point of force reaction through the normally section torque transmitting mechanism from the center point of the rotation of the upper base before the drive transmitting member is rotated with the predetermined angle while the vehicle lid in the fully-opened state is under closing operation.