Abstract:
A piston pump group for a brake system and a control method thereof are provided, and the piston pump group includes: a piston, a pump body provided with an operating chamber, and a transmission mechanism used for driving the piston to move in the operating chamber, where the transmission mechanism includes a lead screw transmission assembly, a follower, and a planetary gear assembly used for transmitting power to the lead screw transmission assembly, the follower is fixedly connected to the piston, the lead screw transmission assembly is used for driving the follower to move relative to the operating chamber, and a limiting member used for limiting the movement of the follower is disposed between the lead screw transmission assembly and the follower.
Abstract:
Aspects are provided for positive displacement pumps and methods and systems for controlling such pumps for dispensing at a flow rate based on a downstream flow sensor. A pump controller determines a targeted motor speed for a flow rate set point based on a flow rate function. The pump controller determines a predicted movement time for a motor of the pump to change from a current motor speed to the targeted motor speed, a predicted wait time to reach a flow rate corresponding to the targeted motor speed, and a measurement time after the wait time. The pump controller controls the positive displacement pump according to consecutive control cycles, each control cycle includes a pump movement sub-cycle, a wait sub-cycle, and a measurement sub-cycle. The pump controller determines a measured flow rate during the measurement sub-cycle. A subsequent control cycle is based on the measured flow rate.
Abstract:
In some implementations, a controller may obtain a set of measurement values associated with the dual-pump single-power source system, wherein the set of measurement values includes at least one of one or more speed measurements associated with a clutch that is coupled to a power source and a first pump of the dual-pump single-power source system, a measurement value indicating an output speed of the power source, or a first crank angle associated with the first pump and a second crank angle associated with a second pump of the dual-pump single-power source system. The controller may detect that the clutch is experiencing slippage based on comparing at least two measurement values of the set of measurement values. The controller may perform an action to cause the clutch to disengage a mechanical connection between the first pump and the power source while the power source is running and is mechanically connected to the second pump.
Abstract:
Aspects are provided for positive displacement pumps and methods and systems for controlling such positive displacement pumps for accurate volume dispensing. The pump may run a calibration procedure to determine a mapping between a pump speed and a flow rate for a current configuration of the positive displacement pump, a tubing size, and a fluid characteristic. A pump controller may determine a pump motion profile based on the mapping. The pump motion profile includes an acceleration phase, a constant speed phase, and a deceleration phase such that a total volume pumped according to the pump motion profile and the mapping is equal to a target volume. The pump controller may determine an adjustment to the pump motion profile based on a constant flow rate measured during operation. The pump controller may decelerate the positive displacement pump according to the adjusted pump motion profile until the target volume is dispensed.
Abstract:
A controller for operating a rod pumping unit at a pump speed. The controller includes a processor configured to operate a pump piston of the rod pumping unit at a first speed. The processor is further configured to determine a pump fillage level for a pump stroke based on a position signal and a load signal. The processor is further configured to reduce the pump speed to a second speed based on the pump fillage level for the pump stroke.
Abstract:
A hydraulic pressure control device comprising: a hydraulic sensor provided between a hydraulic pump and a load; a speed command arithmetic unit configured to output a speed command value Vc based on a difference between a hydraulic pressure detection value Pd from the hydraulic sensor and a hydraulic pressure command value Pc; a torque command value arithmetic unit configured to calculate a torque command value Tc based on a difference between a speed detection value Vd of a motor and the speed command value Vc; a current controller configured to control current of the motor based on the torque command value Tc; and a hydraulic pressure abnormality detector configured to detect whether a hydraulic circuit has abnormality based on the speed command value Vc and an operating condition of the load of the hydraulic circuit commanded from an upper-level control device.
Abstract:
A variable capacity hydraulic machine has a rotating group located within a casing and a control housing secured to the casing to extend across and seal an opening in the casing. The control housing accommodates a control circuit and a pair of sensors to sense change in parameters associated with the rotating group. One of the sensors is positioned adjacent the barrel on the rotating group to sense rotational speed and the other senses displacement of the swashplate. The control housing accommodates a control valve and accumulator to supply fluid to the control valve.
Abstract:
Method and apparatus for furnishing process machines with liquid color from a supply thereof provides a loop conduit having respective ends receiving liquid color from the supply and discharging liquid color back into the supply, pumping liquid color through the loop conduit and discharging liquid color from the loop conduit at an intermediate position into a reservoir associated with a process machine upon liquid color level in the reservoir being at a low level limit.
Abstract:
An electric oil pump for supplying oil to at least a part (a clutch) of a transmission is provided in parallel with a mechanical oil pump which is driven by an engine and supplies oil to each part of the transmission. In advance of an operation request to the electric oil pump, the electric oil pump is rotated at a first operation-preparation rotational speed which is a very low speed so as to replace oils in oil pipes controlled by the electric oil pump. Thereafter, the electric oil pump is rotated at a second operation-preparation rotational speed which is a relatively-high speed, and when an actual rotational speed reaches the second operation-preparation rotational speed, it is determined that operation preparation is completed.
Abstract:
Provided is an abnormality detecting device for a construction machine that can estimate an abnormality occurring to a component (engine, pump, etc.) of the construction machine based on the relationship among a plurality of pieces of sensor information and thereby prevent machine failure. A correlation coefficient calculation unit 102 calculates correlation coefficients between time-series sensor values acquired by a plurality of sensors 101. A correlation coefficient comparison unit 103 compares the correlation coefficients and calculates the degree of difference between each correlation coefficient and other correlation coefficients. An abnormality judgment unit 104 judges that an abnormality has occurred to a part related to a sensor when the degree of difference calculated in regard to the sensor exceeds a preset value.