Abstract:
In one arrangement there is provided a method of charging a fluid vessel (10). The vessel (10) comprises a rigid outer container, an expandable bladder (8) within the outer container in fluid communication with a release valve (9) of the fluid vessel (10). A cavity separates the rigid outer container and the bladder and the method comprises the steps of providing a first fluid (5a) to the cavity, for providing external pressure to the expandable bladder (8), and subsequently providing a second fluid (5) to the bladder (8) prior to use of the fluid vessel (10).
Abstract:
An apparatus includes a low-carbon steel member. The low-carbon steel member yields plastically more than about 5% before fracturing at temperatures down to about −40° C. when stress is applied to the low-carbon steel member sufficient to cause the low-carbon steel member to so yield.
Abstract:
Device for supplying domiciliary and ambulatory oxygen, comprising an oxygen filling station and a portable oxygen reserve that can be selectively connected to the filling station, the filling station comprising an oxygen concentrator intended to isolate gaseous oxygen from the air, a liquefier connected to one outlet of the concentrator to receive the isolated gaseous oxygen so that it can be liquefied, a transfer connector connected to one outlet of the liquefier and intended to be connected to an inlet connector of the reserve, the reserve comprising a tank connected to the inlet connector so that liquid oxygen can be transferred from the filling station to the tank, a delivery system comprising members for tapping off, heating and regulating the flow of the oxygen from the tank so as to deliver gaseous oxygen to a patient, the oxygen supply device comprising a gaseous oxygen outlet connector intended to be connected to the airways of a patient, the said oxygen outlet connector being situated on the portable oxygen reserve downstream of the delivery system, characterized in that it comprises a single gaseous oxygen outlet connector intended to be connected to the airways of a patient, the said single connector being situated on the portable oxygen reserve so that the patient has to remain constantly connected to the reserve in order to be supplied with gaseous oxygen both when the reserve is connected to the filling station and when it is not, so that the patient can remain constantly connected to the reserve and supplied with gaseous oxygen thereby, that is to say both when the reserve is connected to the filling station and when it is not.
Abstract:
Collar for mounting a valve protection bonnet or cap on a fluid cylinder, characterized in that it comprises a first mounting portion provided with first fixing elements (2) intended to collaborate in removable attachment with a mating fixing region belonging to a valve, a second mounting portion provided with second fixing elements (3) intended to collaborate in removable attachment with a mating fixing region belonging to a protective cap, and a third mounting portion provided with bearing elements (4) intended to collaborate with an accepting region on the exterior surface of a body of the cylinder.
Abstract:
The invention relates to a device for controlling the filling and/or extraction of a fluid, for example, in relation to a pressurised fluid tank including a body having a connection end (516) which is equipped with engagement means that are intended to co-operate with complementary engagement means which are provided, for example, on a connection interface of a tank, a member (17) for opening a valve that can move in relation to the body, actuation means (250) which can move the opening member (17) selectively and which can move between a running position and a stopped position corresponding respectively to an operating position and a rest position of the opening member (17) and a hole (105) which can receive a removable outlet or inlet coupling (75) for the distribution of the fluid. The invention is characterised in that the device includes retractable locking means (55) which are used to lock the actuation means (250) in the running position and which are designed to co-operate with the hole (105), such that, when there is no coupling (75) connected to the control device in the corresponding hole, the locking means (55) are biased towards the retracted position, thereby preventing the actuation means (250) from being stably maintained in the running position.
Abstract:
A container (1) having a first compartment (3) and a second compartment (5) separated by a movable gas impermeable partition (7) is used for storing and dispensing a gas for use in a process and receiving and storing a gas recovered from the process. Fresh gas is dispensed (9) from the first compartment (3) for use in a process and recovered gas is fed (11) to the second compartment (5), whereby a volume of the second gas displaces a volume of the first gas by movement of the partition (7) to enlarge the second compartment (5) relative to the first compartment (3).
Abstract:
This invention provides an attachment for mounting electromagnetic identification tags onto the necks of bottles. The tag has a portion which provides a receptacle portion for an RFI tag. This receptacle portion is connected to a portion that embraces a neck of a bottle to attach the receptacle portion, and thereby, the RFID tag to the neck of the bottle. The identification tag may be formed from a material that does not interfere with electromagnetic signals.
Abstract:
A hydrogen station includes gas storage equipment for storing hydrogen, a dispenser for charging hydrogen gas supplied from the gas storage equipment into a hydrogen tank of a vehicle, and a blower. When charging hydrogen, the blower blows air towards a radiator of the vehicle parked at a predetermined vehicle parking area of the hydrogen station. The current flow of the blower is adjusted in accordance with the heat load on the radiator.
Abstract:
A fuel supply for a fuel cell including a fuel container and an impurity removal cartridge connected to the fuel container, where both the fuel container and the impurity removal cartridge are integrated into a single unit.
Abstract:
The housing is intended to receive a source introduced by means of its head and pushed into a position ensuring good transmission of energy. The housing includes a mechanism for converting a transverse movement towards the interior of the housing imparted by a pusher element of the mechanism accessible from the exterior of the housing into an orthogonal movement for ejection of the source.