Abstract:
A magneto-optical switch includes a birefringent crystal that receives a light beam, a half-wave plate pair that receives the light beam from the birefringent crystal, a Faraday rotator that receive the light beam from the half-wave plate, a prism that receives the light beam from the Faraday rotator, and a reflective surface that receives the light beam from the Faraday rotator. The Faraday rotator receives an electromagnetic field to change the polarization of the light beam as it passes through the Faraday rotator.
Abstract:
Device whereby one or more bands of optical wavelengths may be selected for further transmission. All light within the optical bandwidth of operation is first coupled from the core mode of an optical fiber to a specific cladding mode by a chirped broadband cladding mode coupler. These cladding mode lightwaves then enter a narrow-band core mode coupler whereby selected optical bands of wavelengths, tuned by the tension on the optical fiber, are re-coupled back into the core of the optical fiber. The chirped broadband cladding mode coupler is isolated from the narrow-band core mode coupler by an acoustic absorber to limit the acoustic interaction between them.
Abstract:
The present invention includes a poled fiber using the second-order nonlinear optical phenomenon, a method of fabricating the poled fiber, and a dispersion compensator to compensate for the chromatic dispersion of an optical fiber. The method of fabricating the poled fiber according to the present invention comprises, a step of covering an etching-resistant material on the portions of the cladding excluding the portions to be grooved in the longitudinal direction of the fiber, a step of etching the bare portions of the cladding excluding the portions covered with the etching-resistant material, a step of evaporating electrodes on the etched portions, and a step of applying voltage to the evaporated electrodes. According to the fabrication method of the poled fibre as described above, along with the use of a general optical fibre instead of a special fiber, since the distance between electrodes around the core can be appropriately controlled, a high electro-optic coefficient can be induced to the poled fibre.
Abstract:
The present invention replaces liquid crystal light control elements in fiber-optic faceplate liquid crystal displays (LCD) with suspended particle devices (SPDs), and provides for passive light control without the need for either polarized light or special alignment layers. A fluid or film containing suspended particles may be asymmetric in shape so that their optical density depends strongly upon their orientation. The orientation of the particles within the fluid can be manipulated by an application of an electric field, so that the fluid or film may appear to be transparent to both polarizations of light when the electric field is applied, and opaque when the electric field is removed and the orientation of the particles is allowed to randomize naturally.
Abstract:
An optical switch is disclosed which operates as binary or digital switch. Two glass waveguides are arranged in an X-like pattern such that they approach each other at a waist region without crossing over one another. A polymer region contacts both waveguides at this waist region and has a refractive index that can be changed more than that of the adjacent glass by applying heat. The refractive index of the polymer can be varied from an index which is same as the glass waveguides; to be less than that of the glass in which case the polymer acts as a cladding. When the index of the polymer is lower than that of the glass through the application of heat, light launched into one of the waveguides continues along the waveguide via total internal reflection and no light crosses the glass polymer boundary. When the index of the polymer is the same as the glass light propagates through the polymer from the first waveguide and crosses the polymer boundary so that switching occurs from the first waveguide to the second.
Abstract:
A wavelength conversion apparatus and method uses four wave mixing of a first wavelength and a control wavelength in an optical fiber to convert the first wavelength to a desired wavelength. Four wave mixing is produced by operating the optical fiber at a predetermined input power density and by using a fiber length which provides substantial Raman gain. The first wavelength is converted to a higher wavelength by using the higher wavelength four wave mixing signal and converted to a lower wavelength by using the lower wavelength four wave mixing signal.
Abstract:
The present invention relates to a variable optical filter that can be used to filter an incoming signal, attenuate an incoming signal or in one configuration switch an incoming signal from one path to another. The present invention has found that an accurate and economical variable optical filter can be created by using an elastomeric material having a high coefficient of expansion in cooperation with a means for locally varying the temperature of the elastomeric material as an actuator for moving a reflective surface within the optical filter. The actuator can be operated in a controlled manner for example, to effect a tilt of the reflective surface for switching or attenuating an optical signal, or to vary the resonant wavelengths of a resonant cavity between partially reflective surfaces. In accordance with the invention there is provided, a variable optical filter comprising an input port and an output port; a first at least partially reflective disposed to receive a beam of light launched from the input port; an elastomeric material for supporting and varying the position of the at least partially reflective surface with respect to the input port; a heater for applying variable amounts of heat to the elastomeric material to move or pivot the at least partially reflective surface relative to the input port; and, control means for controlling the heater and for providing a signal to apply variable amounts of heat.
Abstract:
In a single path embodiment of a multimedia projector (30) of the present invention, the light emitted from blue, green, and red generally monochromatic LEDs (72) or LED arrays (70) is propagated through optical fibers (76) and then integrated through an optical integrator (40). A display controller (56) receives image data from a personal computer (58) and converts the data to color frame sequential data delivered to a common display device (44). The display controller (56) synchronizes the data with ON/OFF signals conveyed to an LED power supply (34). Because the synchronization is entirely electronic, the frame sequential information can be cycled much faster and more accurately than can be accomplished with a color wheel system (10). In a multiple path embodiment of a multimedia projector (120) of the present invention, the light emitted from blue, green, and red generally monochromatic LEDs (72) or LED arrays (70) is propagated along separate respective optical paths (36b, 36g, 36r) through optical fibers (76) and then integrated through an optical integrator (40). A display controller (56) receives image data from a personal computer (58) and converts the data to color frame sequential data delivered to respective separate display devices (44b, 44g, 44r) whose output is coupled into a combiner (122). The display controller (56) synchronizes the data between the separate display devices (44b, 44g, 44r) to form a composite image. In this embodiment, all three sets of LEDs (72) can be left ON continuously. Other LED array color combinations can be employed with or without an additional white light path.
Abstract:
A variable light filtering arrangement includes at least one optical fiber section including a waveguiding core, and at least one permanent Bragg grating region in the optical fiber section. The grating region includes a plurality of grating elements constituted by periodic refractive index variations of a predetermined initial periodicity and cumulatively redirecting, of the light launched into the core for guided propagation therein, that having an axial wavelength within a narrow band around a central wavelength that is determined by the periodicity and refractive index variations of the grating elements. At least one of the periodicity and refractive index variations of the grating region is controlledly modified in such a manner as to temporarily change the central wavelength within a predetermined wavelength range.
Abstract:
Embodiments of the disclosure provide an apparatus for emitting laser light and a system and method for detecting laser light returned from an object. The system includes a transmitter and a receiver. The transmitter includes one or more laser sources, at least one of the laser sources configured to provide a respective native laser beam having a wavelength above 1,100 nm. The transmitter also includes a wavelength converter configured to receive the native laser beams provided by the laser sources and convert the native laser beams into a converted laser beam having a wavelength below 1,100 nm. The transmitter further includes a scanner configured to emit the converted laser beam to the object in a first direction. The receiver is configured to detect a returned laser beam having a wavelength below 1,100 nm and returned from the object in a second direction.