Abstract:
An apparatus includes a printed wiring board, a post that supports the printed wiring board, and a heat pipe on the printed wiring board with a first end positioned near an electronic component attached to the printed wiring board and a second end positioned near the post.
Abstract:
An illumination device includes a metal base substrate in a flat planar shape, a plurality of LED modules, and a driving unit which drives each of the LEDs arranged on the metal base substrate. The LED modules have an organic substrate, a plurality of LEDs which are arranged on the organic substrate, a metal member, LED control signal terminals which are set on the edge of the organic substrate, and voltage feed terminals which are set on the edge of the organic substrate. The metal member corresponds to each LED and to which the heat from the LEDs is conducted, and which is electrically connected via a switch element from an electrode of the LED, and which penetrates the organic substrate toward its width direction from the LED mounting surface of the organic substrate and is exposed from the opposite surface.
Abstract:
In a manufacturing method of a package carrier, a substrate having an upper surface, a lower surface, and an opening communicating the two surfaces is provided. An electronic device is disposed inside the opening. A first insulation layer and a superimposed first metal layer are laminated on the upper surface; a second insulation layer and a superimposed second metal layer are laminated on the lower surface. The opening is filled with the first and second insulation layers. First blind holes, second blind holes, and a heat-dissipation channel are formed. A third metal layer is formed on the first and second blind holes and an inner wall of the heat-dissipation channel. A heat-conducting device is disposed inside the heat-dissipation channel and fixed into the heat-dissipation channel via an insulation material. The first and second metal layers are patterned to form a first patterned metal layer and a second patterned metal layer.
Abstract:
A ceramic circuit board for use in packaging an electronic element includes a ceramic-copper plate, and a heat-dissipating unit that is adapted for dissipating heat from the electronic element. The ceramic-copperplate includes a ceramic substrate that has opposite first and second surfaces, and a through-hole formed through the first and second surfaces, a top copper pattern that overlies the first surface of the ceramic substrate and that has at least two conducting portions spaced apart from each other, and a bottom copper layer that underlies the second surface of the ceramic substrate. The heat-dissipating unit includes a heat-dissipating layer that is disposed in the through-hole of the ceramic substrate above the bottom copper layer and that has a thermal conductivity larger than that of the ceramic substrate. A method of making the ceramic circuit board is also disclosed.
Abstract:
A multilayer circuit substrate includes: a laminated circuit portion in which conductive layers and resin insulating layers are alternately laminated; and a metal substrate portion, wherein the laminated circuit portion is fixed to the metal substrate portion so that at least part of a lower surface of the laminated circuit portion is in contact with at least part of an upper surface of the metal substrate portion. An electronic component is mounted on the metal substrate portion.
Abstract:
A wired circuit board includes a metal supporting board having at least one depressed portion, a conductive portion embedded in the at least one depressed portion and formed of a material having a higher conductivity than that of the metal supporting board, an insulating layer formed on the metal supporting board so as to cover the conductive portion, and a plurality of wires formed on the insulating layer in mutually spaced-apart relation so as to oppose to the conductive portion.
Abstract:
An LED package includes a light transmissive encapsulation, an LED die embedded in the encapsulation from a bottom surface of the encapsulation, a positive electrode electrically connected to an anode of the LED die, and a negative electrode electrically connected to a cathode of the LED die. The encapsulation includes a light emitting surface opposite to the bottom surface thereof. The LED die includes a front surface for outputting light outward, and a back surface opposite to the front surface. The front surface is covered by the encapsulation and faces the light emitting surface of the encapsulation. The back surface is exposed outside. A light emitting device is provided by mounting the LED package to a circuit board. The circuit board has a heat conductor connecting with the LED die.
Abstract:
A printed circuit board is provided with at least one via hole, in which a heat dissipating element is arranged, wherein at least one radiant source is arranged on the heat dissipating element. The lighting device is provided with at least one such printed circuit board.
Abstract:
The electronic control device includes: a printed circuit board; a heat-generating member having a plurality of legs which are mounted on the printed circuit board by connections between the legs and the printed circuit board; and a casing which radiates heat that is transferred from the heat-generating member, wherein: the legs are connected via press-fit connections with the printed circuit board.
Abstract:
Circuit board arrangement, in particular multiple layer circuit board arrangement with at least one low-power circuit path, wherein the circuit board arrangement is suitable for population with at least one electronic circuit board element to be cooled, wherein the circuit board consisting of a nonconductive material includes at least one cooling inlay embedded in the circuit board for cooling of the power component, wherein the cooling inlay forms at least in part, a high power guide element for the at least one electronic power component, wherein the line cross section or the power carry capacity of the high power guide element is significantly greater than the line cross section or the current carry capacity of the low power circuit path, and wherein the high power guide element is used and/or is also used for electrical contacting of the power component.