Abstract:
When incident light is incident to a photodetector, photoelectrons are emitted therefrom and then multiplied to output an electric current signal. This current signal is integrated over a predetermined period of time in an integrator to be converted to a voltage signal. This voltage signal is converted to a digital signal by an AD converter. This digital signal is supplied to a histogramming memory, which generates a pulse height distribution of voltage signal. Based on a pulse height distribution N(h) generated with incidence of measurement-object light to the photodetector, a pulse height distribution of single photoelectron events p.sub.1 (h) generated by a generator of pulse height distribution of single photoelectron events, and pulse height distributions of k-photoelectron events p.sub.k (h) (k=2, 3, . . . ) calculated and generated in a generator of pulse height distributions of k-photoelectron events, an estimating unit estimates a distribution of numbers of photoelectrons emitted with incidence of the measurement-object light to the photodetector, and thereby obtains the intensity of the measurement-object light.
Abstract:
The intensity and phase of one or more ultrashort light pulses are obtained using a non-linear optical medium. Information derived from the light pulses is also used to measure optical properties of materials. Various retrieval techniques are employed. Both "instantaneously" and "non-instantaneously" responding optical mediums may be used.
Abstract:
The object of the invention is to provide a method which makes it possible to determine the correlation between two optical signals, which makes it possible to correlate two optical signals, without using a crystal element which is associated with a plurality of drawbacks, because the components are quite expensive. It has been found possible to replace a frequency doubling crystal by an active, optical wave guide, e.g. in the form of an active, optical fiber, said wave guide transmitting fluorescence which is intensity-related to the arrived signal. When this fluorescence is detected in spectral bands, e.g. in the blue region of the visible light, an image of the strength of the arriving signal may be formed. Current distance delaying of the two correlated signals makes it possible to produce an image of the correlation between the signals.
Abstract:
The invention relates to a device for multichannel analog detection of a signal to be detected having a very good signal/noise ratio. It incorporates a modulator (53) producing a modulated signal S(P); means of synchronous attenuation (54) of variable phase .PHI. producing an attenuated modulated signal; a multipoint receiver (52) receiving the modulated-attenuated signal and producing for each point a primary analog signal; an integrator producing for each point a value V(P,.PHI.) resulting from the integration over N periods of the primary analog signal; means of reading, of digitizing and of storing the values V(P,.PHI.) for a given .PHI. value; a phase sequencer giving .PHI. the values .PHI..sub.0 +i2.pi./n successively where i is an integer varying from 1 to n; a digital processing unit making it possible to obtain data representative of S(P) from the values V(P,.PHI.). It is particularly well adapted to the detection of a luminous flux with an array of photodiodes.
Abstract:
A photon-counting type streak camera device measures by an integration operation the probability distribution of production timing of phenomenon light such as fluorescence light which a specimen produces upon reception of repeatedly generated pulse exciting light. A phenomenon streak camera system time-measures the phenomenon light, and a reference streak camera system time-measures reference light being synchronous with the exciting light. An arithmetic unit calculates the difference between outputs of the phenomenon and reference streak camera systems, so that the streak camera device can be prevented from being effected by a jitter or drift caused by a power change of a pulse light source.
Abstract:
A streak camera having two pairs of orthogonal deflecting electrodes for producing elliptical waveform patterns. The sweep frequency is synchronized with a repetitive light source, and the eccentricity and position of the elliptical waveform can be adjusted such that part of the sweep excites the phosphor output screen and a return portion of the sweep may occur off the phosphor screen.
Abstract:
An extension of the noncollinear second harmonic generation technique for lse autocorrelation measurements is described. A diffraction-grating is used to produce a tailored, expanded beam, with a differential time delay along its expanded axis. When this beam is combined with an inverted replica of itself at the frequency-doubling crystal, the monitored spatial profile of the generated second harmonic beam gives directly the duration of the incident laser pulse. A time resolution of better than 1 picosecond (ps) is obtained at 500 nanometers (nm), and a total measurement range of .about.80 ps. The optical system here described enables the extension of the measurement range in a simple manner.
Abstract:
Automatic device for measuring the duration of a very short light pulse, such as a laser pulse, by a correlation procedure from two ''''half pulses'''' including two lines; each provoking a different optical delay.
Abstract:
A system and a method for single-shot compressed optical-streaking ultra-high-speed imaging, the system comprising a spatial encoding module spatially encoding the transient event with a binary pseudo-random pattern into spatially encoded frames; a galvanometer scanner temporally shearing the spatially encoded frames; and a CMOS camera receiving the temporally sheared spatially encoded frames, during one exposure time of the camera, for reconstructing the transient event. The method comprises spatial encoding a transient event; temporal shearing resulting spatially encoded frames of the event, spatio-temporal integration, and reconstruction.