Abstract:
Methods, systems and devices for generating an authentication key are provided. Two or more communications devices can generate an authentication key by monitoring a physical stimulus that is experienced by both devices (e.g., a common physical stimulus). Each device can then use an identical, predetermined algorithm to generate a common authentication key based on the stimulus. The devices can use the common authentication key to establish a secure network.
Abstract:
Electronic devices may include displays. A display may include a display unit that includes an array of display pixels and a backlight unit that provides backlight illumination for the display pixels. An automated alignment system may be used to align the display unit to the backlight unit. The alignment system may include a camera, a control unit, and computer-controlled positioners. The control unit may gather alignment feature location information from the display unit and the backlight unit using the camera. The control unit may determine a centroid of the backlight unit based on the alignment feature location information. The alignment feature location information may include the respective locations of openings in the backlight unit. The control unit may operate computer-controlled positioners to align the display unit with respect to the backlight unit using the centroid and to subsequently attach the display unit to the backlight unit.
Abstract:
A head-mounted device may have a display with first and second pixel arrays that display content for a user. A head-mounted support structure in the device supports the pixel arrays on the head of the user. A left positioner may be used to position a left lens module that includes a left lens and the first pixel array. A right positioner may be used to position a right lens module that includes a right lens and the second pixel array. Sensing circuitry such as proximity sensing circuitry may be used to detect relative positions between the left and right lens modules and facing surfaces of a user's nose while the user is wearing the head-mounted support structure. Control circuitry may adjust the positions of the left and right lens modules using interpupillary distance information for the user and using information from the sensing circuitry.
Abstract:
Electronic devices may be provided having internal components mounted to a structural glass support member. The structural glass support member may have a planar front surface that forms a front surface of the device. The structural glass support member may have bent portions that form sidewall surfaces of the device. Portions of the structural glass support member may form a transparent display cover layer. A rigid or flexible display may be mounted to the structural glass support member. Additional internal device components may be mounted to the display. A thin enclosure for enclosing the internal components in the device may be mounted to the structural glass support member. The thin enclosure may be mounted to the structural glass support member using a peripheral member. The thin enclosure may be free from attachments to internal components or may be adhesively bonded to one or more internal components.
Abstract:
A head-mountable display device includes a housing defining a front opening and a rear opening, a display screen disposed in the front opening, a display assembly disposed in the rear opening, a first securement strap coupled to the housing, the first securement strap including a first electronic component, a second securement strap coupled to the housing, the second securement strap including a second electronic component, and a securement band extending between and coupled to the first securement strap and the second securement strap.
Abstract:
A head-mountable display device includes a housing defining a front opening and a rear opening, a display screen disposed in the front opening, a display assembly disposed in the rear opening, a first securement strap coupled to the housing, the first securement strap including a first electronic component, a second securement strap coupled to the housing, the second securement strap including a second electronic component, and a securement band extending between and coupled to the first securement strap and the second securement strap.
Abstract:
A head-mounted device may have a display with first and second pixel arrays that display content for a user. A head-mounted support structure in the device supports the pixel arrays on the head of the user. A left positioner may be used to position a left lens module that includes a left lens and the first pixel array. A right positioner may be used to position a right lens module that includes a right lens and the second pixel array. Sensing circuitry such as proximity sensing circuitry may be used to detect relative positions between the left and right lens modules and facing surfaces of a user's nose while the user is wearing the head-mounted support structure. Control circuitry may adjust the positions of the left and right lens modules using interpupillary distance information for the user and using information from the sensing circuitry.
Abstract:
A head-mounted device may have a display with first and second pixel arrays that display content for a user. A head-mounted support structure in the device supports the pixel arrays on the head of the user. A left positioner may be used to position a left lens module that includes a left lens and the first pixel array. A right positioner may be used to position a right lens module that includes a right lens and the second pixel array. Sensing circuitry such as proximity sensing circuitry may be used to detect relative positions between the left and right lens modules and facing surfaces of a user's nose while the user is wearing the head-mounted support structure. Control circuitry may adjust the positions of the left and right lens modules using interpupillary distance information for the user and using information from the sensing circuitry.
Abstract:
A head-mounted device may have a head-mounted support structure. Rear-facing displays may present images to eye boxes at the rear of the head-mounted support structure. A forward-facing publicly viewable display may be supported on a front side of the head-mounted support structure facing away from the rear-facing displays. The forward-facing display may have pixels that form an active area in which images are displayed and may have a ring-shaped inactive border area that surrounds the pixels. A cover layer may cover the forward-facing display and other optical components. The cover layer may have laminates on front and rear surfaces. To protect an edge surface of the cover layer, encapsulation material may be provided on the edge surface or may otherwise separate the edge surface from an exterior of the device.
Abstract:
A system can include head-mounted devices that collaborate to process views from cameras of the respective head-mounted devices and identify objects from different perspectives and/or objects that are within the view of only one of the head-mounted devices. Sharing sensory input between multiple head-mounted devices can complement and enhance individual units by interpreting and reconstructing objects, surfaces, and/or an external environment with perceptive data from multiple angles and positions, which also reduces occlusions and inaccuracies. As more detailed information is available at a specific moment in time, the speed and accuracy of object recognition, hand and body tracking, surface mapping, and/or digital reconstruction can be improved. Such collaboration can provide more effective and efficient mapping of space, surfaces, objects, gestures and users.