Abstract:
A pressure vessel has a composite shell; a boss defining a port in the composite shell and having a neck; and an interface element disposed between the composite shell and the boss. The interface element is neither bonded to the composite shell nor to the boss, thereby allowing for movement between the interface element and the composite shell and allowing for movement between the interface element and the boss. The interface element further includes a neck disposed adjacent the neck of the boss.
Abstract:
A pressure vessel for the storage of pressurized gaseous hydrogen includes a liner which defines an interior for the accommodation of the gaseous hydrogen and a wrapping encompassing the liner which gives the pressure vessel its dimensional stability. In order to prevent a discharge of gaseous hydrogen from the wrapping of the pressure vessel at a high rate if the pressure vessel is discharged after a prolonged downtime, the wrapping of the pressure vessel is designed to be at least partially gas-permeable, so that the gas penetrating through the liner can escape continuously through the wrapping of the pressure vessel.
Abstract:
An example valve described herein includes a bonnet having a bonnet cavity defining a bonnet inner surface, a bonnet outer surface, and a first pressure sensing passageway extending between the bonnet outer surface and the bonnet cavity. A base is coaxially coupled to the bonnet and has a base outer surface, a base cavity that defines a base inner surface, a fluid inlet passageway extending between the base outer surface and the base cavity, a fluid outlet passageway extending between the base outer surface and the base cavity, and a second pressure sensing passageway extending between the base outer surface and the base cavity. A valve element within the base and bonnet cavities controls a fluid flow path through the fluid inlet passageway and the fluid outlet passageway.
Abstract:
The present invention comprises a tank for liquefied gases or a so-called cryogenic tank (1) with a tank bottom structure (10) and a tank wall structure (11) arranged around a circumference of the tank bottom structure (10). The tank bottom structure (10) is provided with a tank bottom hub (2) adapted for being held by a bottom hub retainer (20) on a tank support structural floor (23). The tank is simple to install, cheap in production and handles in an improved manner forces acting upon it.
Abstract:
Composite pressurizable structures overwound with fibers or braided bundles of fibers are described. The pressurizable structures comprise one or more axial sections which themselves comprise both concave and convex surfaces. The shape characteristics are related to geodesic as well as to non-geodesic trajectories of the fibers. Axial sections of the pressurizable structures can be rotated, expanded, or bended with respect to their longitudinal axis. Such pressurizable structures may be used in pressure vessels, flexible pipelines, spring elements, robotic actuators, adaptive buildings among other uses. Manufacturing techniques facilitated by the present structures allow for the construction of very large structures.
Abstract:
A cryogenic storage tank having an inner vessel disposed within an outer vessel. The fluid flow lines that extend from the interior of the inner vessel to the exterior of the outer vessel have both corrugated- and non-corrugated portions. The corrugated portions advantageously facilitate the bending of the fluid flow lines into a desired orientation while the non-corrugated portions provide rigidity and stiffness for the fluid flow lines.
Abstract:
A vehicle and a fuel storage system for a vehicle are provided. A frame defining a perimeter structure and having first and second ends, and a generally open central interior portion, is configured to receive any one of a plurality of vehicle bodies in a body-on-frame vehicle architecture. A fuel cell arrangement is disposed adjacent one end of the frame, and a fuel storage tank is disposed in the central interior portion of the frame, along a length of the frame. The fuel storage tank provides a source of fuel for the fuel cell, and also acts as a fuel delivery conduit from one end of the frame to the other. The fuel storage system can include a non-rigid mounting structure for the fuel tank, thereby substantially isolating the fuel tank from movements of the vehicle frame.
Abstract:
A mounting bracket assembly includes a clamping arrangement mounted for vertical movement on a mounting structure and is movable between an engaged position and disengaged position relative to a self-contained breathing apparatus held in the mounting bracket assembly. A camming arrangement is located between the clamping arrangement and the mounting structure for permitting and preventing vertical movement of the clamping arrangement relative to the mounting structure. A powered latching mechanism is engageable with a portion of the clamping arrangement for providing unlatched and latched positions. A control arrangement separate from the powered latching mechanism is operatively connected thereto to selectively control the powered latching mechanism and effect release of the self-contained breathing apparatus from the latched position when the vehicle is in a stationary and parked condition.
Abstract:
The invention relates to a compressed air tank for utility vehicles, comprising a tubular or cylindrical jacket sealed at both ends by way of welded outer bases. At least one outer base and/or the jacket is provided with a hole. A sleeve is welded onto the hole. At least the inside of the compressed air tank is provided with an inner coating. The contact surfaces between the jacket and the outer bases are adapted such that the contact surfaces abut one another and such that the contact surfaces can be welded together without using any weld material through laser welding. The sleeve is welded onto the hole by way of laser welding or CD welding. The inner coating of the tank is manufactured by powder coating.
Abstract:
According to the present invention, a gas tank having a gas-barrier inner shell and an outer shell that is formed so as to cover the inner shell and is made of a pressure-resistant FRP, such outer shell comprising reinforcing fiber bundles (A), a thermosetting resin (B), and an elastomer particles and/or thermoplastic resin particles (C), provided that elastomer particles and/or thermoplastic resin particles (C) that have been dispersed in a thermosetting resin (B) exist in reinforcing fiber bundles (A), is provided. Such gas tank is excellent in strength and heat resistance and has suppressed gas permeability.