Abstract:
In a measurement method in the manufacture of paper or paperboard, different forces prevailing in a nip between a roll and a counter roll of an apparatus conveying a paper or paperboard web are measured. In the method there are several measurement points implemented with one or more film sensors (3) placed in the roll (1) in the transverse direction of the paper or paperboard web. The measurement information obtained from the measurement points by means of the sensor or sensors (3) is utilized to determine the pressure distribution of the nip. The film sensor (3) is a piezo- and pyroluminescent sensor from which the measurement information can be received optically at least in the initial stage, or a sensor comprising an electromechanical film (EMFi). The sensors (3) placed in the calender roll (1) can be utilized to measure the pressure distribution of the calender nip (N).
Abstract:
The present invention is a fiber optic cable which uses pressure sensitive films or tactile films in order to detect areas on a fiber optic cable where excessive loads have been applied or experienced. In the present invention, a plurality of strips of tactile film or pressure sensitive film are inserted, at regular intervals, throughout the fiber optic cable structure in a fashion similar to that of swellable tape. The tactile film or pressure sensitive film used can be any color-changing stress sensor which is formed in the shape of a flat strip. The present invention uses strips of tactile or pressure sensitive film of different widths which are inserted periodically throughout the cable, both circumferentially and along the length of the cable. The films are located between the buffer tube(s) and the outer jacket of the cable or between the fibers and the outer jacket of the cable. This intermittent use decreases the overall cost and weight of the cable, over using a continuous length of tactile film. It is also desirable, in the present invention, to have the tactile or pressure sensitive film with corrugated folds along the width of the film. This corrugation provides a much higher sensitivity to loads experienced by the cables due to more “aggressive” deformation of the film during buckling.
Abstract:
In a tactile opto-electronic pressure sensor having a body with a rigid matrix including axially extending bores in which hollow cylinders of an elastic material are firmly disposed such that the front ends of the hollow cylinder project from one side of the matrix while the opposite ends of the hollow cylinders are flush with the other side of the matrix, a light emitting electro-luminescent foil is disposed on the front faces of the hollow cylinders such that light emitted therefrom shines through the hollow cylinders and is recorded by an evaluation device arranged at the other side of said matrix, the hollow cylinders being axially compressible such that their openings become smaller with increasing forces acting thereon, the light intensity received by the evaluation units depending on the forces applied to the hollow cylinders.
Abstract:
A fiber optic core cladded with a material having an index of refraction lower than the core material and light sensing means located along the length of the core and cladding material. The sensing means receives light which escapes into the cladding from the core when the fiber optic is stressed, and produces an output in response to light received. Measurement of the output provides both magnitude and location information with respect to stresses in the fiber optic. A measurement of fiber temperature by detection of dark current, which is the function of temperature, is effected in pixels of the sensing means located in intimate contact with the fiber. An accurate measurement of stress in the fiber is made by subtracting dark current measurements from stress measurements when the fiber optic is excited with light.
Abstract:
A fiber optic sensor array includes a row of transmitting optical fibers, with a column of detecting optical fibers overlapping the transmitting fibers. A planar compliant spacer separates the transmitting fibers from the detecting fibers, so that a sensor element is defined at each location where a detecting fiber overlaps a transmitting fiber. The surfaces of each transmitting fiber and each receiving fiber are modified at the location of each sensor element to increase the optical coupling between the transmitting fiber and the receiving fiber at that element. The spacer in the array includes an opening between the transmitting fiber and the detecting fiber at the location of each sensor element. A support surface is affixed to the detecting fibers opposite the compliant spacer and a protective cover layer is affixed to the transmitting fibers opposite the compliant spacer. An array of light emitting elements, with each element in the emitting array being adapted to transmit light into one of the transmitting fibers, and an array of light detecting elements, each element in the detecting array being adapted to detect light emanating from one of the detecting fibers are provided. A clock times the emission of light from each emitting element and times the detection of light at each detecting element. The clock is connected to cause each detecting element to detect light in sequence after each emitting element has emitted light.
Abstract:
A fiber optic load measuring system is disclosed comprising an optical pulse generator, an optical bus, a plurality of optical pulse routing switches, a plurality of optical attenuators disposed along the surface where the load is to be measured, a plurality of optical pulse routing switches, and a signal processor. The optical attenuators are each connected to a dedicated optical pulse routing switch and are adapted to vary the attenuation of the optical pulse in response to the applied load. The optical pulse routing switches are adapted to selectively direct the optical pulses to individual optical attenuators, such that each of the optical attenuators is separately and sequentially pulsed.
Abstract:
The force-sensitive position sensor or writing tablet is composed (for each of the two coordinate directions) of two layers of parallel extending light conductors having a spacing of 0.1 mm or less, the distance between the two layers being approximately 5 .mu.m. By locally exerting a force on the carrier material in which the light conductors are embedded, by means of the tip of a stylus, the light conductors are geometrically deformed. These deformations cause a variation of the optical coupling between the two locally deformed conductors, thus causing a detectable transfer of light variation from one conductor to the other. By connection of one layer to a light source and the other layer to a suitable detector, a force-sensitive position sensor can be constructed by means of electro-optical means.
Abstract:
A pressure-measuring sheet comprising a support having thereon a layer of microcapsules containing an electron-donating color former capable of forming a color on contact with an electron-accepting color developer, the microcapsules comprising a mixture of at least two groups of microcapsules having different ratios .delta./D of the number average wall thickness .delta. of the microcapsules to the volume average particle diameter D of the microcapsules and having a Ps value difference of about 50 to about 1,000 kg/cm.sup.2. Various planar and linear pressures and the distributions thereof can be measured by the pressure-measuring sheet utilizing changes in the densities of colors formed upon the application of pressures to the microcapsule layer because the color density changes are directly related to the pressures applied.
Abstract translation:一种压力测量片,包括其上具有包含能够形成与受电子显色剂接触的颜色的供电子成色剂的微胶囊层的载体,所述微胶囊包含至少两组具有不同的微胶囊的混合物 微胶囊的数均壁厚Δδ与微胶囊的体积平均粒径D的Δ/ D比值,并且具有约50至约1,000kg / cm 2的Ps值差。 可以通过压力测量片利用在对微胶囊层施加压力时形成的颜色密度的变化来测量各种平面和线性压力及其分布,因为颜色密度变化与施加的压力直接相关。
Abstract:
In a pressure measuring method by interposing a pressure-sensitive recording sheet between the parts to be measured and pressing the recording sheet with the parts, line pressures, face pressures, etc., can be precisely measured without need of highly skilled techniques and complicated calculations and unaccompanied by localized uneven recordings by pressing the recording sheet through a sheet material having regular embossed patterns.
Abstract:
A recording sheet, especially useful for measuring pressures of 1 to 2,000 kg/cm.sup.2 with a high degree of accuracy, comprising a support, a recording layer thereon, and a protective layer of a transparent synthetic resin provided on top of the recording layer by extrusion coating, the recording layer containing microcapsules having a .delta./D ratio (as defined in the specification hereof) of about 1.5 .times. 10.sup.-3 to about 2.5 .times. 10.sup.-1.
Abstract translation:特别适用于高精度地测量压力为1〜2000kg / cm 2的记录纸,包括支撑体,记录层,以及通过挤出设置在记录层顶部的透明合成树脂保护层 包含具有约1.5×10 -3至约2.5×10 -1的Δ/ D比(如本说明书中所定义)的微胶囊的记录层。