Abstract:
An in-situ technique is provided for automatically verifying proper operation of a photometric device, such as a cell density probe (CDP). The CDP has a first detector and a second detector. The first detector senses light that is transmitted from a light source of the CDP. The second detector senses light that has passed through an optical gap at a tip of the CDP, wherein the sensed light has been reduced in intensity due to light absorption. Electrical current provided to the light source is reduced, and the resultant values of a light characteristic (such as intensity) at the first and second detectors are sensed. These values from the detectors are compared against one or more predicted values. If the CDP is operating properly, the values from the detectors will be consistent with the predicted values. If there is a malfunction in the CDP, then the values from the detectors will be inconsistent with the predicted values.
Abstract:
The disclosure is directed to a test media reader module including a housing, a membrane, and an optical imager. The housing is configured to receive a test media adapter and has a barrier wall configured to separate the test media adapter from an interior of the housing. The barrier wall includes a window having an interior side and an exterior side. The membrane is transparent to a wavelength useful for imaging test media in the test media adapter. The membrane has a reactive region and overlies at least a portion of the exterior side of the window. The optical imager is located interior to the housing and is configured to image the test media located on the exterior side of the window along an optical path extending through the window and the membrane.
Abstract:
A fluorometer with at least one light source, a measuring station with a holder for at least one specimen, a measuring head, and an evaluation station with a detector for evaluating emission signals emitted by a specimen. The measuring head is formed by three optical blocks (A, B, C) assembled in a modular manner. A different measurement method is able to be carried out with each optical block (A, B, C). All the optical blocks (A, B, C) operate the same detector.
Abstract:
A multi-module pipe inspection and repair device. The device includes a base module, a camera module, a sensor module, an MFL module, a brush module, a patch set/test module, and a marker module. Each of the modules may be interconnected to construct one of an inspection device, a preparation device, a marking device, and a repair device.
Abstract:
The present invention relates generally to the field of biochemical laboratory. More particularly the invention relates to the improved and more accurate instrumental features of equipment used as e.g. fluorometers, photometers and luminometers. The object of the invention is achieved by providing an optical measurement instrument for photoluminescence and chemiluminescence measurements wherein there is chemiluminescence detector in such a proximity to the sample that the emission radiation from the sample may reach the detector via a direct path. This way it is possible to achieve an essentially improved accuracy of the chemiluminescence measurement as well as an improved overall efficiency of the optical measurements.
Abstract:
An optical system made up of lens arrays and normal lenses is particularly suitable for use as a massive parallel reader (approximately 102 channels) for microtiter plates and the like in absorption, fluorescence and luminescence.
Abstract:
The invention relates to an imaging system for optical automatic analysers, especially fluorescence readers. On the sample side, the imaging system contains a cylindrical lens array and a prism array, which is arranged upstream of the cylindrical lens array. The prismatic effect of the prisms of the prism array lies in the direction of the cylinder axes of the cylindrical lenses. Together with a telescopic imaging system, the inventive imaging system creates a number of parallel cylindrical focussing volumes between the cylindrical lens array and a detector array, these focussing volumes being slanted towards the optical axis of the telescopic system in relation to the vertical. The arrangement enables the detection of fluorescence with a large aperture in one direction, and at the same time enables depth selective analysis of the fluorescence signal, especially the discrimination of the fluorescent radiation originating from the solution above.
Abstract:
A microscopic unit for a multi-station modular FTIR spectrometer system is disclosed. The microscope unit, which has a Cassegrain objective, not only provides the usual optical path for radiation during visual observation, and for infrared radiation in the transmission mode, but also provides a separate optical path for infrared radiation in the reflectance mode and in a macroscopic transmission mode. An optical switching wheel is in the path of entering radiation, which may enter through any of three ports; and the wheel is movable into a plurality of alternative positions, including a position in which radiation entering through one port passes through the wheel toward the objective, a position in which radiation entering through the same port is reflected by a wheel-carried mirror along the separate optical path, a position in which a wheel-carried mirror causes radiation to bypass the microscope, and positions in which other wheel-carried mirrors reflect into the microscope radiation entering through other ports.
Abstract:
A COMBINATION TEACHING AID AND MODULAR INSTRUMENTAL ANALYSIS SYSTEM IN WHICH A PLURALITY OF MODULES ARE PROVIDED, EACH HAVING A SEPARATE FUNCTION, AND IN WHICH THE DIFFERENT MODULES ARE ADAPTED TO BE PLACE TOGETHER IN DIFFERENT COMBINATION TO PROVIDE DIFFERENT OPTICAL ANALYSIS INSTRUMENTS. THE MODULES INCLUDE A LIGHT SOURCE FOR PROVIDING LIGHT, A DETECTOR MODULE FOR RECEIVING LIGHT WHICH HAS BEEN EXPOSED TO A SAMPLE COMPARTMENT MODULE WHICH RECEIVES ONE OR MORE SAMPLES TO BE ANALYZED, AND MAY INCLUDE DISPLAY MEANS IN THE FORM OF A METER OR THE LIKE FOR READING THE OUTPUT OF THE DETECTOR MODULE. THE COMBINATION MAY ALSO INCLUDE A MONOCHROMATOR UNIT FOR PROVIDING SUBSTANTIALLY MONOCHROMATIC LIGHT, AND A FILTER MODULE WHICH IS ADAPTED TO CONTAIN ONE OR MORE FILTERS THROUGH WHICH A LIGHT BEAM MAY BE PASSED FOR OBTAINING A BEAM OF DESIRED FREQUENCY. DIFFERENT ARRANEMENTS OF THE VARIOUS MODULES WILL PRODUCE A SPECTROPHOTOMETER, A FILTER PHOTOMETER, OR A NEPHELOMETER. THE DESCRIBED MODULE UNITS ARE ARRANGED SO THAT AT LEAST SOME OF THEM MAY BE DISPOSED ON A BASE AND OPTICALLY ALIGNED BY MEANS OF COMBINATION ADJUSTING AND CLAMPING MEANS, SO THAT THE UNITS MAY BE THERE AFTER MOVED, OR REPLACED AS DESIRED WITHOUT AFFECTING THE ALINGMENT THEREOF. THE DESCRIBED UNITS ARE CONSTRUCTED AND ARRANGED SO THAT ALL THE SIGNIFICANT OPERATIONAL AND FUNCTIONAL PROPERTIES OF EACH MODULE MAY BE DIRECTLY OBSERVED BY THE STUDENT. THEREFORE, EACH MODULE IS ADAPTED TO PERFORM A MINIMUM NUMBER OF FUNCTIONS, AND THE MODULAR CONCEPT AND THE CONSTRUCTION FEATURES ARE USED AS A TEACHING AID USED TO EMPHASIZE THE RELATION BETWEEN VARIOUS SYSTEMS OF OPTICAL INSTRUMENTAL ANAYLSIS. THE FILTER COMPARTMENT MODULE AND THE SAMPLE COMPARTMENT MODULE INCLUDE HOLDER MEANS FOR HOLDING LIGHT FILTERS OR SAMPLE UNITS, AND THE HOLDER UNIT IS CONSTRUCTED SO AS TO FACILITATE INTERCHANGE OF SAMPLE HOLDERS AND FILTER UNITS, AND TO BE ADAPTED FOR USE WITHOUT CHANGE TO PERFORM DIFFERENT FUNCTIONS IN DIFFERENT INSTRUMENATAL COMBINATIONS.
Abstract:
The present invention provides novel microfluidic substrates and methods that are useful for performing biological, chemical and diagnostic assays. The substrates can include a plurality of electrically addressable, channel bearing fluidic modules integrally arranged such that a continuous channel is provided for flow of immiscible fluids.