Abstract:
A method and device for the remote control of a function of a vehicle is disclosed. Images of the vehicle are recorded by a camera which is integrated in the mobile control unit. A visual signal is generated at a predetermined position on the vehicle, where remote control is only enabled if the visual signal is recorded by the camera. The device for the remote control of a function of a vehicle includes a mobile control unit with an integrated camera to record the images of the vehicle. A signal generation unit is arranged at a predetermined position on the vehicle for the generation of a visual signal and the vehicle includes a function unit for the control of the function. The function unit is formed in such a way that remote control is only enabled when the visual signal is recorded by the camera.
Abstract:
A system for controlling operation of a ground treatment machine includes a hand-held device that wirelessly communicates with the ground treatment machine. The system includes a radio frequency and an infrared frequency wireless communications that are established between the hand-held device and the ground treatment machine. Instructions associated with operation of the machine are communicated to the machine from the hand-held device via the radio frequency communications. A status of the infrared wireless communication is utilized to assess the proximity of the ground working machine relative to the operator and the operating environment such that operation of the machine in accordance with the operational instructions can be interrupted if necessary.
Abstract:
An apparatus for enabling manipulation of one or more audio objects may include a processor and memory storing executable computer program code that cause the apparatus to at least perform operations including detecting at least one audio object and operating a pointer in a selected direction by a user. The computer program code may further cause the apparatus to detect a gesture of the pointer in response to the operating of the pointer in the selected direction. The computer program code may further cause the apparatus to control at least one characteristic of the detected audio object in response to the detected gesture of the pointer or an indication of a selection of the at least one characteristic. Corresponding methods and computer program products are also provided.
Abstract:
The present invention provides a method which includes: acquiring, by a control device, a first signal received strength of data that is received by each controlled device of at least one controlled device in a direct path mode, and a second signal received strength of data that is received by each controlled device of the at least one controlled device in a multipath mode; calculating a ratio of the first signal received strength to the second signal received strength of each controlled device, to obtain a signal received strength ratio of each controlled device; determining, according to the signal received strength ratio of each controlled device and a preset signal received strength ratio corresponding to the controlled device, whether the control device directs to the corresponding controlled device; and determining a target controlled device to which the control device directs, and displaying a control interface of the target controlled device.
Abstract:
The communication device can easily serve as an extended user interface such as a remote controller of a target apparatus without causing any complicated operations to a user. The communication device includes the following units. An apparatus information obtainment unit (203) obtains apparatus information from an apparatus. A position information obtainment unit (206) obtains position information of the communication device (102). An operation information obtainment unit (212) obtains operation information based on the apparatus information. A storage unit (213) stores the position information as apparatus position information indicating as a position of the apparatus, in association with the operation information. A direction sensor unit (207) detects direction of the communication device (102). A directional space calculation unit (208) calculates a directional space of the communication device (102). A selection unit (209a) specifies the apparatus existing in the directional space based on the apparatus position information and selects the operation information associated with the specified apparatus. An operation information transmission unit (215) transmits, based on the selected operation information, a control signal to the specified apparatus so as to allow the communication device to operate the apparatus.
Abstract:
The communication device can easily serve as an extended user interface such as a remote controller of a target apparatus without causing any complicated operations to a user. The communication device includes the following units. An apparatus information obtainment unit (203) obtains apparatus information from an apparatus. A position information obtainment unit (206) obtains position information of the communication device (102). An operation information obtainment unit (212) obtains operation information based on the apparatus information. A storage unit (213) stores the position information as apparatus position information indicating as a position of the apparatus, in association with the operation information. A direction sensor unit (207) detects direction of the communication device (102). A directional space calculation unit (208) calculates a directional space of the communication device (102). A selection unit (209a) specifies the apparatus existing in the directional space based on the apparatus position information and selects the operation information associated with the specified apparatus. An operation information transmission unit (215) transmits, based on the selected operation information, a control signal to the specified apparatus so as to allow the communication device to operate the apparatus.
Abstract:
A method comprises determining, based on at least one radio frequency packet passed wirelessly between first and second devices using an array of plural antennas provided in one of the first and second devices, an orientation of the second device with respect to the first device and, if the orientation satisfies a predetermined criterion, controlling operation of the first device.
Abstract:
While an example terminal device is being held with its long sides extending horizontally, when a left-right direction is inputted by using a right analog stick, a first virtual camera is directed to a left-right direction in a virtual space. On the other hand, while the terminal device is being held with its long side extending vertically, when an apparent left-right direction, that is, an up-down direction in the state where the terminal device is held with its long sides extending horizontally, is inputted by using a right analog stick, the first virtual camera is directed to the left-right direction in the virtual space.
Abstract:
A remote controller is arranged for selecting a light source among a plurality of light sources. The remote controller has an omnidirectional transmitter and is arranged to instruct, by means of the omnidirectional transmitter, the light sources to transmit a directional signal comprising a code, which is unique for each light source. Further, the remote controller has a directional signal receiver, and is arranged to receive the directional signals from the light sources, and signal comparison circuitry connected with the directional signal receiver. The remote controller is arranged to select one of the light sources on basis of the received directional signals. Furthermore, the remote controller comprises a transmission indicator, which is arranged to generate an indication signal, indicative of a successful omnidirectional transmission, and it is arranged to initiate the selection of one of the light sources by means of the indication signal.
Abstract:
The user interaction system comprises a portable pointing device (101) connected to a camera (102) and sending pictures to a digital signal processor (120), capable of recognizing an object (130) and a command given by the user (100) by moving the pointing device (101) in a specific way, and controlling an electrical apparatus (110) on the basis of this recognition.