Abstract:
A receiver having an array antenna estimates arrival directions of multiple paths that arrive with an angular spread. Consequently, arrival direction estimation accuracy can be ensured without increasing throughput even if the power every path is low by estimating an average arrival direction of an entire set of multiple paths having the angular spread from a result of one angular spectrum by multiple correlation operation units that perform mutual correlation operations with pilot signals for baseband signals received by the array antenna, a path detection unit that detects multiple arrival path receiving timings by generating a delay profile based on output of each of the correlation operation units, a path correlation value synthesis unit that synthesizes a correlation operation value calculated in the multiple correlation operation units and an arrival direction estimation unit that collectively estimates multiple path arrival directions using output of the path correlation value synthesis unit.
Abstract:
There is provided a method and apparatus for selecting an appropriate base station and an optimal data rate to provide a voice service and a data service based on a voice service load in a CDMA system. A base station transmits two pilot signals orthogonally spread with different orthogonal codes in association with its voice service load, and a mobile station estimates the voice service load based on a pilot power ratio.
Abstract:
A method of associating the Training code to a Channelisation code in a mobile telecommunications system. The method includes associating a Training code with a Channelisation code prior to transmission according to a set of rules such that upon detection of the Training code by a receiver, the Channelisation code is known.
Abstract:
A system is disclosed for use in a wireless communication system to provide an estimated pilot signal. The system includes a receiver and a front-end processing and despreading component in electronic communication with the receiver for despreading a CDMA signal. A pilot estimation component is in electronic communication with the front-end processing and despreading component for estimating an original pilot signal using a Kalman filter to produce a pilot estimate. A demodulation component is in electronic communication with the pilot estimation component and the front-end processing and despreading component for providing demodulated data symbols. The Kalman filter is configured by an offline system identification process that calculates parameters using a prediction error method and a Gauss-Newton algorithm and generates state estimates using the Kalman filter. The calculating and generating are iteratively performed to train the Kalman filter for real-time operation.
Abstract:
In a remote unit of a wireless communication system, the speed of acquisition, or reacquisition, of a pilot signal by a search engine is increased. PN space is divided into segments and a coarse search of each segment is performed using a set of “fast” search parameters. A set of peak signal strengths, along with their corresponding PN offsets, is saved for each segment of PN space. Following the search of all segments of PN space, the peak signal strengths which were saved during the coarse acquisition are evaluated. Coarse acquisition search results are used by the remote unit to determine fine search window parameters for subsequent searches performed by the remote unit search engine. The fine search parameters concentrate searching efforts on portions of PN space most likely to contain a viable base station pilot signal.
Abstract:
In a wireless communication system, a method for estimating a transmitted signal is disclosed. A wireless signal is received that includes a pilot channel and at least one other channel. A transmitted signal is estimated using an equalizer and the received wireless signal. The equalizer includes a filter with a plurality of taps that are adapted through use of an adaptive algorithm that uses an estimated pilot estimated from the received wireless signal. The pilot channel is transmitted in the wireless signal that included the at least one other channel. The estimated pilot is extracted and provided to the adaptive algorithm.
Abstract:
Techniques are provided to support fast frequency hopping with a code division multiplexed (CDM) pilot in a multi-carrier communication system (e.g., an OFDMA system). Each transmitter (e.g., each terminal) in the system transmits a wideband pilot on all subbands to allow a receiver (e.g., a base station) to estimate the entire channel response at the same time. The wideband pilot for each transmitter may be generated using direct sequence spread spectrum processing and based on a pseudo-random number (PN) code assigned to that transmitter. This allows the receiver to individually identify and recover multiple wideband pilots transmitted concurrently by multiple transmitters. For a time division multiplexed (TDM)/CDM pilot transmission scheme, each transmitter transmits the wideband pilot in bursts. For a continuous CDM pilot transmission scheme, each transmitter continuously transmits the wideband pilot, albeit at a low transmit power level. Any frequency hopping rate may be supported without impacting pilot overhead.
Abstract:
A Rake receiver suitable for receiving, for example, direct sequence CDMA signals, in which the pilot code used to correlate the received signal in each Rake finger (RF1, RF2, RFN) is interpolated prior to the correlation.
Abstract:
The specification and drawings present a new method, system, apparatus and software product for pilot scrambling using a scrambling code (e.g., pseudo-noise code such as a Gold code, a Kasami code, a Hadamard code, m-sequences, etc.) in communication systems, e.g., for wireless communications. The sector/cell specific scrambling codes are mapped to the multiple pilot symbols within, e.g., an SCH (synchronization channel) repetition period. This improves receiver performance on a sector edge and/or a cell edge in, e.g., tight-frequency re-use applications.
Abstract:
A method and apparatus for conducting a pilot signal search in a wireless communications network. The location of a mobile is determined within the network. This location is then used in determining search window sizes and other search parameter information that is used to search all pilot signals identified in a designated pilot signal set. Search window size is also determined based upon the location of the mobile and another component related to multipath effects for a transmitted pilot signal.