Abstract:
Claimed methods reduce leakage currents in transparent conductive films comprising conductive nanostructures without substantially impairing the films' optical properties or physical integrity. Imposition of electrical stimuli to separate conductive regions leads to reduced conductivity of the intervening lesser conductive regions.
Abstract:
The present invention relates to a metal nanobelt and a method of manufacturing the same, and a conductive ink composition and a conductive film including the same. The metal nanobelt can be easily manufactured at a normal temperature and pressure without requiring the application of high temperature and pressure, and also can be used to form a conductive film or conductive pattern that exhibits excellent conductivity if the conductive ink composition including the same is printed onto a substrate before a heat treatment or a drying process is carried out at low temperature. Therefore, the metal nanobelt and the conductive ink composition may be applied very appropriately for the formation of conductive patterns or conductive films for semiconductor devices, displays, solar cells in environments requiring low temperature heating. The metal nanobelt has a length of 500 nm or more, a length/width ratio of 10 or more, and a width/thickness ratio of 3 or more.
Abstract:
A transparent conductor including a conductive layer coated on a substrate is described. More specifically, the conductive layer comprises a network of nanowires which may be embedded in a matrix. The conductive layer is optically transparent and flexible. It can be coated or laminated onto a variety of substrates, including flexible and rigid substrates.
Abstract:
A planar thermal dissipation patch comprises a polymer substrate; an adhesive layer attached under the polymer substrate; a protection sheet over the adhesive layer, the protection sheet is removed from the adhesive layer before attaching the planar thermal dissipation patch; a thermal dissipation layer formed on the polymer substrate; wherein the thermal dissipation layer is formed of CNT, conductive polymer, graphite or the combination thereof.
Abstract:
Disclosed herein are nanostructure patterned transparent conductors and methods of forming such transparent conductors including using a deposition method to form an active area and peripheral area and patterning method to pattern the active area.
Abstract:
The present invention relates to a multilayer transparent conducting electrode, comprising a substrate layer (1), an adhesion layer (2), a percolating network of metal nanofilaments (3) and an electrical homogenization layer (4), the said electrical homogenization layer (4) comprising: an elastomer having a glass transition temperature Tg of less than 20° C. and/or a thermoplastic polymer having a glass transition temperature Tg of less than 20° C. and/or a polymer, an optionally substituted polythiophene conducting polymer, and nanometric conducting or semiconducting fillers.
Abstract:
A system for in-process orientation of particles used in direct-write inks for fabricating a component may include a device for polarizing direct-write particles in an aerosol. An outlet may direct the aerosol including the polarized direct-write particles on a substrate to form a component. An apparatus may cause the polarized direct-write particles to be aligned in a selected orientation to form the component with predetermined characteristics when deposited on the substrate.
Abstract:
A soluble liquid crystal thermosetting oligomer containing polysilsesquioxane (POSS) includes a structure in which the POSS is combined with a main chain of a soluble liquid crystal thermosetting oligomer, an insulation composition comprising the same, and a substrate comprising and insulation layer using the insulation composition.
Abstract:
A transparent conductor including a conductive layer coated on a substrate is described. More specifically, the conductive layer comprises a network of nanowires that may be embedded in a matrix. The conductive layer is optically clear, patternable and is suitable as a transparent electrode in visual display devices such as touch screens, liquid crystal displays, plasma display panels and the like.
Abstract:
Electrodes formed in a partial surface area of a semiconductor substrate and distal ends of conductive nanotubes bristled on a surface of a growth substrate, are bombarded with rare gas plasma. The distal ends of the conductive nanotubes bombarded with the rare gas plasma are brought into contact with the electrodes bombarded with the rare gas plasma to fix the conductive nanotubes to the electrodes. The growth substrate is separated from the semiconductor substrate in such a manner that the conductive nanotubes fixed to the electrodes remain on the electrodes formed on the semiconductor substrate.