Abstract:
Micro-components having at least one individual layer are produced according to the method, which have functional layers 3 on the walls of inner structures, for example of flow channels. The micro-components are intended to be suitable for a large number of different applications in chemical reaction technology, for heat exchanging, for mixing substances or for evaporating liquids. In particular, the micro-components are intended to have no problems in respect of leaks in the flow channels. The method has the following method steps: A. producing the at least one individual layer by: a. producing a first metal layer or a metal foil 1; b. forming the inner structures in and/or on the first metal layer or metal foil 1 by suitable etching methods and/or metal deposition methods; and c. forming the functional layers 3 solely on the walls of the inner structures and thereafter B. stacking up and joining the one individual layer to a segment terminating the inner structures, or a plurality of individual layers to one another and to the terminating segment.
Abstract:
A process, which comprises forming a metal micro-pattern on the surface of an inorganic substrate, surface-treating the surface of the metal micro-pattern and the surface of the plastic substrate to make it chemically reactive, and bringing the metal micro-pattern into contact with the surface of the plastic substrate to transfer the metal micro-pattern from the surface of the inorganic substrate to the surface of the plastic substrate, can be easily and simply carried out using conventional equipments to produce one or more metal pattern fixed on a plastic material.
Abstract:
High throughput screening of crystallization of a target material is accomplished by simultaneously introducing a solution of the target material into a plurality of chambers of a microfabricated fluidic device. The microfabricated fluidic device is then manipulated to vary the solution condition in the chambers, thereby simultaneously providing a large number of crystallization environments. Control over changed solution conditions may result from a variety of techniques, including but not limited to metering volumes of crystallizing agent into the chamber by volume exclusion, by entrapment of volumes of crystallizing agent determined by the dimensions of the microfabricated structure, or by cross-channel injection of sample and crystallizing agent into an array of junctions defined by intersecting orthogonal flow channels.
Abstract:
The microreactor is completely integrated and is formed by a semiconductor body having a surface and housing at least one buried channel accessible from the surface of the semiconductor body through two trenches. A heating element extends above the surface over the channel and a resist region extends above the heating element and defines an inlet reservoir and an outlet reservoir. The reservoirs are connected to the trenches and have, in cross-section, a larger area than the trenches. The outlet reservoir has a larger area than the inlet reservoir. A sensing electrode extends above the surface and inside the outlet reservoir.
Abstract:
A microfabrication process for making enclosed, subsurface microfluidic tunnels, cavities, channels, and the like within suspended beams includes etching a single crystal silicon wafer to produce trenches defining a beam. The trench walls are oxidized, and the interior of the beam is etched through a channel via on the top of the beam to form a hollow beam with oxide sidewalls. The beam is released, and the via is then sealed to form an enclosed released channel beam,