System for forming a gas flow of reactants for a doped glass material
    152.
    发明申请
    System for forming a gas flow of reactants for a doped glass material 审中-公开
    用于形成掺杂玻璃材料的反应物气流的系统

    公开(公告)号:US20050069638A1

    公开(公告)日:2005-03-31

    申请号:US10951869

    申请日:2004-09-29

    Abstract: A system and a method in producing a doped glass material, particularly a glass material to be used in light amplifying optical waveguides. The method comprising: bringing at least a first dopant and a second dopant of the glass material into a vaporous gas phase; controlling the vapour pressure of the gas phase of each dopant by bringing each dopant to a desired temperature which is simultaneously used to control the composition of their gas phase; and mixing each vaporous dopant with the gas flow of the basic material for the glass material, which basic material is also in a gas phase and is used as a carrier gas for the dopants, wherein said basic material and said dopants together constitute the required gas flow of so-called reactants, to be used for producing the glass material; performing the mixing so that said dopants are each mixed in turn with the same gas flow of the basic material in such an order that said desired temperatures of the dopants are increasing in relation to one another.

    Abstract translation: 用于制造掺杂玻璃材料的系统和方法,特别是用于光放大光波导的玻璃材料。 所述方法包括:将所述玻璃材料的至少第一掺杂剂和第二掺杂剂引入气相中; 通过使每种掺杂剂达到同时用于控制其气相组成的所需温度来控制每种掺杂剂的气相的蒸气压; 并且将每种气态掺杂剂与用于玻璃材料的基础材料的气流混合,该基本材料也处于气相中,并且用作掺杂剂的载气,其中所述碱性材料和所述掺杂剂一起构成所需气体 用于生产玻璃材料的所谓反应物流; 进行混合,使得所述掺杂剂各自依次以基本材料的相同气流依次混合,使得掺杂剂的所需温度相对于彼此增加。

    Method of fabricating rare earth doped optical fibre
    154.
    发明授权
    Method of fabricating rare earth doped optical fibre 有权
    稀土掺杂光纤的制造方法

    公开(公告)号:US06851281B2

    公开(公告)日:2005-02-08

    申请号:US10106868

    申请日:2002-03-27

    Abstract: The present invention provides a method of fabricating rare earth doped preforms and optical fibers by a combination of modified chemical vapor deposition (MCVD) process and solution doping technique said MCVD process is used to develop matched or depressed clad structure inside a silica glass substrate tube followed by deposition of porous silica soot layer containing GeO2, P2O5 or such refractive index modifiers by the backward deposition method for formation of the core and presintering the deposited particulate layer by backward pass with flow of GeCl4 and/or corresponding dopant halides, soaking the porous soot layer into an alcoholic/aqueous solution of RE-salts containing codopants such as AlCl3 in definite proportion, drying, oxidation, dehydration and sintering of the RE containing porous deposit and by collapsing at a high temperature to produce the preform followed by drawing the fibers by known technique to produce fibers with suitable core-clad dimensions and geometry.

    Abstract translation: 本发明提供了一种通过改进的化学气相沉积(MCVD)工艺和溶液掺杂技术的组合制造稀土掺杂的预成型件和光纤的方法,所述MCVD工艺用于在石英玻璃衬底管内开发匹配或凹陷的包层结构,随后 通过用于形成芯的反向沉积方法沉积含有GeO 2,P 2 O 5或这种折射率改性剂的多孔二氧化硅烟灰层,并通过GeCl 4和/或相应的掺杂剂卤化物的流动反向通过沉积的颗粒层,浸泡多孔烟灰 将含有RE的多种沉积物的含RE的盐类,如AlCl 3的含水醇溶液/干燥,氧化,脱水和烧结,并在高温下收缩,制成预成型体,然后用纤维拉伸 已知的技术来生产具有合适的芯包层尺寸和几何形状的纤维。

    Optical fiber preform, production method thereof, and optical fiber produced from the preform
    155.
    发明授权
    Optical fiber preform, production method thereof, and optical fiber produced from the preform 有权
    光纤预制棒,其制造方法以及由该预制棒制成的光纤

    公开(公告)号:US06836605B2

    公开(公告)日:2004-12-28

    申请号:US10291813

    申请日:2002-11-12

    Abstract: An optical fiber preform having a low core noncircularity and eccentricity for producing an optical fiber having an improved polarization mode dispersion, a method for producing the preform, and an optical fiber produced from the preform. The optical fiber preform is produced by the following steps. Diameter-reduced portions 11a and 11b are formed in the vicinity of the ends of the glass pipe 11. A glass rod 12 is inserted into the glass pipe 11. The glass rod 12 is fixed to the glass pipe 11 at the diameter-reduced portion 11a. The glass pipe 11 and the glass rod 12 are heat-unified from the diameter-reduced portion 11b forward to the diameter-reduced portion 11a. The optical fiber preform has a core noncircularity of at most 1.5%. The optical fiber has a polarization mode dispersion of at most 0.15 ps/km1/2 at a wavelength of 1,550 nm.

    Abstract translation: 一种具有低芯非圆度和偏心率的光纤预制件,用于制造具有改进的偏振模色散的光纤,由预成型件制造的预制棒的制造方法和光纤。 光纤预制棒通过以下步骤制造。 直径减小部分11a和11b形成在玻璃管11的端部附近。玻璃棒12插入到玻璃管11中。玻璃棒12在直径减小部分处固定到玻璃管11上 11a。 玻璃管11和玻璃棒12从直径减小部分11b向前加热到直径减小部分11a。 光纤预制棒的芯非圆度至多为1.5%。 该光纤在1,550nm的波长下具有至多0.15ps / km 1/2的偏振模色散。

    Dispersion flattened fiber with high negative dispersion and method for the manufacture thereof
    157.
    发明授权
    Dispersion flattened fiber with high negative dispersion and method for the manufacture thereof 有权
    具有高负离散性的分散平坦纤维及其制造方法

    公开(公告)号:US06754425B2

    公开(公告)日:2004-06-22

    申请号:US10669868

    申请日:2003-09-23

    Abstract: The invention relates to a dispersion flattened fiber (DFF) with high negative dispersion and a manufacturing method thereof. The dispersion flattened fiber comprises a central core; ring-type cores and low refractive regions alternately formed outside the central core; a cladding surrounding outside the ring-type cores and low refractive regions; and a coating outside the cladding. Since the dispersion flattened fiber has the dispersion of −20 to −60, it has a wide range of application and can be used for various purposes in the field of optical telecommunication.

    Abstract translation: 本发明涉及具有高负离散度的分散平坦纤维(DFF)及其制造方法。 分散扁平纤维包括中心芯; 环形芯和低折射区交替地形成在中心芯之外; 围绕环型芯和低折射区域的包层; 以及在包层外部的涂层。 由于色散扁平光纤具有-20至-60的色散,因此具有广泛的应用范围,可用于光通信领域的各种用途。

    Dispersion control fiber and method of manufacturing large size preform thereof
    158.
    发明授权
    Dispersion control fiber and method of manufacturing large size preform thereof 有权
    分散控制纤维及其制造大尺寸预型体的方法

    公开(公告)号:US06711341B2

    公开(公告)日:2004-03-23

    申请号:US10166095

    申请日:2002-06-11

    Abstract: A dispersion control fiber and a method of manufacturing a large size preform are provided. In one embodiment, the dispersion control fiber comprises a core composed of SiO2, GeO2, P2O5 and Freon, and a cladding composed of SiO2, GeO2, P2O5, and Freon. The P2O5 content is selected not to exceed 10% of the total weight of a compound composing the core. An embodiment of the method of manufacturing a large size preform for a dispersion control fiber by an MCVD process comprises depositing SiO2, GeO2, P2O5, and Freon in an inner periphery of a deposition tube to form a cladding layer, and depositing SiO2, GeO2, P2O5 and Freon on an inner periphery of the cladding layer to form a core layer.

    Abstract translation: 提供了一种分散控制纤维及其制造方法。 在一个实施方案中,色散控制光纤包括由SiO 2,GeO 2,P 2 O 5和氟利昂组成的芯和由SiO 2,GeO 2,P 2 O 5和氟利昂组成的包层。 选择P2O5含量不超过构成核心的化合物总重量的10%。 通过MCVD工艺制造用于分散控制纤维的大尺寸预制件的方法的一个实施方案包括在沉积管的内周中沉积SiO 2,GeO 2,P 2 O 5和氟利昂以形成包覆层,并且沉积SiO 2,GeO 2, P2O5和氟利昂在包覆层的内周上形成核心层。

    Light-amplifying optical fiber and method of making the same
    159.
    发明授权
    Light-amplifying optical fiber and method of making the same 有权
    光放大光纤及其制造方法

    公开(公告)号:US06687439B1

    公开(公告)日:2004-02-03

    申请号:US09674071

    申请日:2000-10-26

    Abstract: The present invention relates to a light-amplifying optical fiber comprising a structure for realizing a flat gain characteristic or oscillation characteristic in a wider wavelength band, and a method of making the same. The light-amplifying optical fiber according to the present invention comprises a second doped area containing a first doped area including an optical axis center and having a larger outer diameter than the first doped area. The second doped area is doped with at least one of Al2O3, P2O5, Y2O3, and B2O3 as an oxide of an element having a valence different from that of a cation constituting a main material of the light-amplifying optical fiber; whereas the first doped area is doped with at least one of Er, Nd, Tm, Yb, and Pr as a rare-earth element together with the oxide.

    Abstract translation: 本发明涉及一种包括用于实现更宽波长带中的平坦增益特性或振荡特性的结构的光放大光纤及其制造方法。根据本发明的光放大光纤包括: 第二掺杂区域包含包含光轴中心并且具有比第一掺杂区域更大的外径的第一掺杂区域。 掺杂有Al 2 O 3,P 2 O 5,Y 2 O 3和B 2 O 3中的至少一种作为与构成光放大光纤的主要材料的阳离子的价态不同的元素的氧化物的第2掺杂区域; 而第一掺杂区域与氧化物一起掺杂有Er,Nd,Tm,Yb和Pr中的至少一种作为稀土元素。

Patent Agency Ranking