Abstract:
The invention in some aspects relates to radiometers and related methods of use. In some aspects of the invention, methods are provided for determining a circumsolar profiles at external locations of interest, e.g., at a solar power generation system installation site.
Abstract:
An optical module comprising: an optical waveguide transports light, the optical waveguide including a first mirror which reflects first light; an adhesive sheet formed over the optical waveguide, the adhesive sheet including a first gap above the first mirror; a first light-transmissive layer formed in the first gap; a lens sheet arranged over the adhesive sheet, the lens sheet including a first lens which is formed above the first light-transmissive layer; and a light-emitting device formed above the lens sheet, the light-emitting device including a light-emitting portion which emits the first light to the first lens.
Abstract:
A photoelectric converting module includes a circuit board and an optical coupling member. The circuit board includes a substrate defining a plurality of heat-conducting through holes and a hot-curable adhesive layer covering the heat-conducting through holes. The optical coupling member is fixed to the substrate via the hot-curable adhesive layer.
Abstract:
A detector structure having a sensor for detecting energy impinging on the structure in the infrared and/or optical frequency band; an electronics section disposed behind the sensor for processing electrical signal produced by the sensor in response to the sensor detecting the infrared and/or optical energy; and an electrically conductive layer for inhibiting electromagnetic energy outside of the visible and infrared portions of the spectrum, such electrically conductive layer being disposed between impinging energy and the electronics section, such layer having a transmissivity greater than 90 percent in the visible and infrared portions of the spectrum and being reflective and/or dissipative to portions of the impinging energy outside of the visible and infrared portions of the spectrum. In one embodiment an electrically conductive layer having a substantially constant absorptivity to electromagnetic energy within the visible and infrared portions of the spectrum. In one embodiment, the layer is graphene.
Abstract:
An optical power meter including a photodiode having a surface for receiving a beam of light, a thermo-electric cooler for maintaining the photodiode at a predetermined temperature, and a current monitor for measuring a drive current passing through the thermo-electric cooler allows dark current drift arising from a varying thermal gradient across the active region of the photodiode to be corrected, thus improving stability of the optical power meter. More specifically, by monitoring the TEC drive current, and applying a correction factor to the optical power readings, the stability of optical power readings is improved by an order of magnitude.
Abstract:
An apparatus includes a first component having a first surface and a second component having a second surface. The first surface includes sputtered gold, and the second surface includes a stainless steel alloy. The first surface is configured to contact the second surface, and one of the components is configured to move against another of the components. The stainless steel alloy could consist of a UNS 21800/AISI Type S21800 metal. The sputtered gold could include ion sputtered gold, and the sputtered gold could have a thickness of about 1 micron. The first component could include a first blade of an adjustable aperture mechanism, where the adjustable aperture mechanism also includes a second blade. The second component could include a first plate of the adjustable aperture mechanism, where the adjustable aperture mechanism further includes a second plate. The blades can be configured to move within a space between the plates.
Abstract:
An image sensing apparatus includes a focal plane array and a cold shield thermally isolated from the focal plane array. The cryogenic cooling apparatus further includes a first cryocooler assembly comprising a first cold finger thermally coupled to the focal plane array. The first cryocooler assembly is configured to maintain a focal plane array operating temperature. The cryogenic cooling apparatus includes a second cryocooler assembly comprising a second cold finger thermally coupled to the cold shield. The second cryocooler assembly is configured to maintain a cold shield operating temperature that is different from the focal plane array operating temperature.
Abstract:
A LED light source measuring instrument includes a shell portion and a test portion. The shell portion supports the test portion. The test portion includes a carrier plate for placing a LED light source to be tested. A conductive structure is set on the carrier plate for electrically connecting with an underside surface of the LED light source; a cooling chip is set on the carrier plate; a vacuum suction device is provided for generating a vacuum force on the test portion for securely attaching the LED light source to the carrier plate. The cooling chip is used for controlling the temperature of the LED light source within a limited range. A fan is provided for generating a cooling airflow to the LED light source. A heat sink fin extends from the carrier plate toward the fan.
Abstract:
An inspection machine capable of inspecting optical property and electrical property of a light emitting device is provided. The inspection machine includes a substrate table, a probe mechanism, a heating apparatus, a cooling apparatus, an image-sensing apparatus, a temperature-sensing apparatus and a moving mechanism. The probe mechanism is capable of moving toward the light emitting device to contact therewith. The heating apparatus is capable of heating the light emitting device within a first temperature range. The cooling apparatus is capable of cooling the light emitting device within a second temperature range. The image-sensing apparatus senses a light emitting image provided from the light emitting device. The temperature-sensing apparatus senses the present temperature of the light emitting device. The image-sensing apparatus is disposed on the moving mechanism. The moving mechanism is capable of moving the image-sensing apparatus. An inspecting method and an inspecting system for the inspection machine are also provided.
Abstract:
The invention in some aspects relates to radiometers and related methods of use. In some aspects of the invention, methods are provided for determining a circumsolar profiles at external locations of interest, e.g., at a solar power generation system installation site.