Abstract:
The invention provides an improved method of imaging analogue flexographic liquid and sheet printing plates. Specifically it involves adding colour or greyscale to some of the clear parts of negatives used to make flexographic plates. This colour moderates the light allowed through the clear areas, keeping reverses open to the maximum depth possible, preventing the widening or overexposure of relief and reverse whilst allowing the maximum amount of light through the small clear areas making the fine relief. It does this by calculating the correct amount of light for each part of the negative according to the predicted amount of light that will be transmitted through it, adjusting the intensity of colour accordingly. It provides a technical advantage of using a negative over the digital process, widening the amount of information available to create the printing plate from just black and white. It enables the plate maker to achieve an optimal printing plate independent of design. The incorporation of a half tone screen over the selective colour enhances total ink delivered. The screen can also level out intensity irregularities in intensities in the exposure units.
Abstract:
A photo-alignment exposure device that includes a first mask and a first exposure device that independently proximity-exposes a first divided area, a second mask and a second exposure device that independently proximity-exposes a second divided area adjacent to the first divided area, and a third mask and a third exposure device that exposes an area on a side of the first divided area near a boundary between the first divided area and the second divided area. The third exposure device is provided with a photo-irradiation angle same as that of the first exposure device or the second exposure device with respect to an exposed surface. A condensing element that condenses the mask transmitted light on the area on a side of the first divided area near the boundary is provided between the mask opening of the third mask and the exposed surface.
Abstract:
A near-field exposure mask according to an embodiment includes: a substrate; a concave-convex structure having convexities and concavities and formed on one surface of the substrate; a near-field light generating film arranged at least on a tip portion of each of the convexities, the near-field light generating film being a layer containing at least one element selected from the group consisting of Au, Al, Ag, Cu, Cr, Sb, W, Ni, In, Ge, Sn, Pb, Zn, Pd, and C, or a film stack formed with layers made of some of those materials; and a resin filled in each of the concavities.
Abstract:
The disclosure relates to an optical arrangement for three-dimensionally patterning a radiation-sensitive material layer, such as a projection exposure apparatus for microlithography. The optical arrangement includes a mask for forming a three-dimensional radiation pattern, a substrate with the radiation-sensitive material layer, and a projection optical unit for imaging the three-dimensional radiation pattern from the mask into the radiation-sensitive material layer. The optical arrangement is designed to compensate for spherical aberrations along the thickness direction of the radiation-sensitive material layer in order to generate a stigmatic image of the three-dimensional radiation pattern.
Abstract:
An LED-based photolithographic illuminator with high collection efficiency is disclosed. The illuminator utilizes an array of LEDs, wherein each LED has an LED die and a heat sink. The LED dies are imaged onto the input end of a homogenizer rod to substantially cover the input end without inclusion of the non-light-emitting heat sink sections of the LED. A microlens array is used to image the LED dies. The collection efficiency of the illuminator is better than 50% and the illumination uniformity at the output end of the light homogenizer is within +/−2%.
Abstract:
Embodiments of the present invention are directed to techniques for obtaining patterns of features. One set of techniques uses multiple-pass rolling mask lithography to obtain the desired feature pattern. Another technique uses a combination of rolling mask lithography and a self-aligned plasmonic mask lithography to obtain a desired feature pitch.
Abstract:
A circular cylinder-shaped mask is used to form an image of a pattern on a substrate via a projection optical system. The mask has a pattern formation surface on which the pattern is formed and that is placed around a predetermined axis, and the mask is able to rotate, with the predetermined axis taken as an axis of rotation, in synchronization with a movement of the substrate in at least a predetermined one-dimensional direction. When a diameter of the mask on the pattern formation surface is taken as D, and a maximum length of the substrate in the one-dimensional direction is taken as L, and a projection ratio of the projection optical system is taken as β, and circumference ratio is taken as π, then the conditions for D≧(β×L)/π are satisfied.
Abstract:
A photomask includes: a transparent substrate; and first and second mask patterns located on the transparent substrate and at least partially facing each other with a space sandwiched therebetween. The first mask pattern includes a semi-light-shielding part which transmits part of light therethrough and a light-shielding part. In the first mask pattern, the semi-light-shielding part at least partially faces the space with the light-shielding part sandwiched therebetween. In a direction along which the first mask pattern and the second mask pattern face each other, the first mask pattern has a size greater than (0.7×λ/NA)×M, and the space has a size less than or equal to (0.5×λ/NA)×M where λ is a wavelength of exposure light, NA is a numerical aperture of a reduced projection optical system of an exposure device, and M is a magnification of the reduced projection optical system.
Abstract:
A system for fabricating a radiation-cured structure is provided. The system includes a radiation-sensitive material configured to at least one of initiate, polymerize, crosslink and dissociate with exposure to radiation. At least one radiation source is configured to project a radiation beam toward the radiation-sensitive material. A smart glass device is disposed between the radiation-sensitive material and the at least one radiation source. The smart glass device includes at least one switchable layer selectively operable from an active state to an inactive state. The smart glass device is configured to expose the radiation-sensitive material to a desired exposure pattern when in one of the active state and the inactive state. A method for fabricating the radiation-cured structure is also provided.
Abstract:
A system for fabricating a radiation-cured structure is provided. The system includes a radiation-sensitive material having a first refractive index; a mask formed from a mask material having a second refractive index; and a radiation source. The mask is disposed between the radiation source and the radiation-sensitive material, and has a plurality of substantially radiation transparent apertures. The radiation source is configured to generate radiation beams for at least one of initiating, polymerizing, and crosslinking the radiation-sensitive material. The system includes at least one of a) an at least one normalizing surface disposed between the radiation source and the mask, b) a refractive fluid having a third refractive index disposed between the radiation source and the mask, and c) the refractive fluid having the third refractive index disposed between the mask and the radiation-sensitive material. A method for fabricating the radiation-cured structure is also provided.