Abstract:
Instruments and methods relating to surface plasmon imaging are described. An instrument comprises a semi-circular rail and a driving mechanism. The driving mechanism is attached to a light source mount and a detector mount, and both the light source mount and the detector mount are attached to the semi-circular rail with connectors. Each connector allows the light source mount and detector mount to slide along the rail. The synchronous movement of the light source mount and the detector mount changes the angle of incidence of a light beam from the light source with respect to the plane of the sample surface on the sample stage.
Abstract:
Method and system for optical detection of nano-objects in a refracting medium. A nano-object (n_oi) and the refractive medium are illuminated (A) with a periodically amplitude modulated coherent electromagnetic heating wave (HB(Ω)), to generate a specified temperature and refractive index profile in the vicinity of the nano-object, and with a coherent electromagnetic probe wave (PB) to generate an emerging probe wave (EPB(Ω)) having at least one intensity component amplitude modulated by a beat at the modulation frequency of the coherent heating wave. The intensity component amplitude modulated by a beat is detected (C) in the emerging wave (EPB(Ω)), to distinguish and represent this nano-object in the refractive medium. The invention is useful in the detection of nano-objects in an industrial, physiological or intracellular medium.
Abstract:
In embodiments of the present invention a second, different waveplate is introduced into a single rotating compensator normal incidence ellipsometer. The second waveplate provides a quarter wavelength retardation that is different from and complementary to that of the first waveplate in order to increase the spectral range for which useful retardation is available, especially towards the deep UV spectrum. The sensitivity for the system may also be increased in the conventional spectral range, since each of the two waveplates may be optimized for its own, somewhat more narrow spectral range of operation. With the proper choice of two waveplates of different retardation, the useful spectral range may be extended from typically 190-820 nm to 150-1000 nm, and beyond if necessary, while increasing the sensitivity within the conventional wavelength range at the same time.
Abstract:
A coordinate measuring machine for the structured illumination of substrates is disclosed. The incident light illumination means and/or the transmitted light illumination means have a pupil access via which at least one optical element is positionable in the optical illumination path. The size and/or type and/or the polarization of the pupil illumination may be manipulated such that the structured illumination of the substrate in the coordinate measuring machine corresponds to the structured illumination of this substrate in the exposure process with a stepper.
Abstract:
An apparatus and method for measurement of the stress in and thickness of the walls of glass containers is disclosed that uses fluorescence to quickly and accurately ascertain both the thickness of the stress layers and the wall thickness in addition to the stress curve in glass containers. The apparatus and method may be used to quickly and accurately measure both the stress in and the thickness of the side walls of glass containers throughout the circumference of the glass containers. The apparatus and method are adapted for large scale glass container manufacturing, and are capable of high speed measurement of the stress in and the thickness of the side walls of glass containers.
Abstract:
An inspection apparatus configured to measure a property of a substrate includes an illumination source, a beam splitter, a first polarizer positioned between the illumination source and the beam splitter, an objective lens and an optical device that alters a polarization state of radiation traveling through it positioned between the beam splitter and the substrate and a second polarizer positioned between the beam splitter and a detector. An axis of the second polarizer is rotated with respect to an axis of the first polarizer. Radiation polarized by the first polarizer that reflects off any optical elements between the beam splitter and the optical device is prevented from entering the detector by the second polarizer. Only radiation that passes twice through the optical device has its polarization direction rotated so that it passes through the second polarizer and enters the detector.
Abstract:
In a substrate supporting apparatus of a surface potential measuring apparatus, a first fluid is ejected around a target region on an upper surface of a substrate from a circular-shaped first porous member of a first fluid ejection part and a second fluid is ejected onto a lower surface of the substrate from a circular-shaped second porous member of a second fluid ejection part which is opposite to the first fluid ejection part. The substrate can be supported and flattened between the first fluid ejection part and the second fluid ejection part. Also, it is possible to keep the distance between the substrate and the first porous member, with a simple construction. As a result, a probe can be positioned above a flatted target region with leaving a predetermined spacing, to perform measurement of a surface potential of the target region on the substrate with high accuracy.
Abstract:
A large number of properties of nanostructures depend on their size, shape and many other parameters. As the size of a nanostructure decreases, there is a rapid change in many properties. When the nanostructure is completely destroyed, those properties essentially disappear. Systems based on changes in properties of nanostructures due to the destruction of nanostructures are proposed. The systems can be used for monitoring the total exposure to organic, inorganic, organometallic and biological compounds and agents using analytical methods.
Abstract:
A spectroscopic ellipsometer has a polarized light generating part for generating elliptically polarized lights of a plurality of wavelengths included in a predetermined measurement wavelength band from white light and directing the elliptically polarized lights to a measurement surface of a substrate, a rotating analyzer where reflected light reflected on the measurement surface enters, and a spectrometer for acquiring spectral intensity of light from the rotating analyzer. A polarization state acquiring part in a control part acquires a polarization state at each wavelength in the measurement wavelength band of the reflected light. The optical characteristic calculation part obtains a film thickness on the measurement surface with high accuracy on the basis of differences between measurement values and theoretical values, the measurement values representing change of a complex amplitude ratio between a p-polarized component and an s-polarized component and a phase difference between a p-polarized component and an s-polarized component.
Abstract:
A kit having a supporting device for maintaining a transparent article having a longitudinal axis A, a proximal end and a distal end. The supporting device including a proximal holder including a port intended to receive the proximal end of the article, and a distal holder including a receiving part intended to receive the distal end of the article, the port and the receiving part being aligned on the same longitudinal axis B. The supporting device further having a compressor for putting the article under longitudinal compression directed towards a center of the article, when the article is mounted on the supporting device with its longitudinal axis A aligned on the longitudinal axis B, and a polarimeter. The invention also pertains to a method for measuring the stress inside an article made of transparent material.