Abstract:
In the present invention, a gas flow rate adjustment apparatus that outputs a raw material gas to an ozone generation apparatus is provided. The gas flow rate adjustment apparatus includes a plurality of flow rate adjustment parts, and outputs a second mixed gas serving as the raw material gas to the ozone generation apparatus. The second mixed gas includes an oxygen gas outputted from a first oxygen flow rate adjustment part and a first mixed gas outputted from a mixed gas flow rate adjustment part. The raw material gas generated by the gas flow rate adjustment apparatus, which includes an oxygen gas and a nitrogen gas, contains the nitrogen gas added to the oxygen gas with the rate of addition being in a range of more than 0 PPM and not more than 100 PPM.
Abstract:
An ozone generator cartridge 60 suitable for a sterilization, decontamination and/or sanitation device. The cartridge comprises a sealable housing 60 for providing a corona discharge, the housing containing at least one power supply unit 64 and at least one inlet 65 for connection to an oxygen or air supply, the cartridge including at least part of at least one ozone conversion cell 63 attached to and extending from an external surface of a wall of the sealed housing, the conversion cell extending into a delivery conduit 52 of a decontamination device that leads to at least one discharge outlet 16.
Abstract:
Ozone generator cells that include two thermally conductive plates that maintain contact between various layers of the cells in the absence of a bonding agent. The cells lack aluminum-containing materials in the discharge region of the cell.
Abstract:
A system including: an ozone generating device including discharge electrodes forming a discharge space; a gas supplying device; a power source device that supplies power to the discharge electrodes; a temperature adjustment device that adjusts temperature of the discharge electrodes; a control unit that controls the ozone generating device; and a detection unit that detects an ozone generation parameter in the ozone generating device. The control unit increases temperature of the discharge electrodes up to a vaporizing temperature of dinitrogen pentoxide by controlling the temperature adjustment device and the gas supplying device or the temperature adjustment device and the power source device, based on the output ozone generation parameter, to thereby switch operation from a normal operation mode to a cleaning operation mode in which surfaces of the discharge electrodes and the discharge space are cleaned up while continuing generation of ozone in the discharge space.
Abstract:
An ozone generating apparatus which is provided with a discharge suppressing member formed of a metal plate and covering an outer circumferential surface of a portion of a dielectric tube facing to a tube sheet, the discharge suppressing member being electrically in contact with a metal tube or the tube sheet, wherein the discharge suppressing member is formed by curling the metal plate longer than a circumferential length of the dielectric tube into a circular shape so as to have an overlapping portion, and by joining together, in the overlapping portion, a part of the metal plate placed outside and a part of the metal plate placed inside, at a near-end portion of the metal plate placed outside in the overlapping portion, and wherein the discharge suppressing member has, on the part of the metal plate placed outside in the overlapping portion, a spring portion.
Abstract:
The present invention relates to a process and system for depositing a thin film onto a substrate. One aspect of the invention is depositing a thin film metal oxide layer using atomic layer deposition (ALD).
Abstract:
Apparatus for the production of a product gas (eg hydrogen and ozone) comprises: a supply of reactant gas (eg oxygen and steam) (14); a pair of electrodes (24) with a space between them of less than 1 mm (28); a conduit to lead the reactant gas from the source through the space between the electrodes; a power source (26) to apply a voltage across the electrodes to dissociate the reactant gas and ultimately permit formation of product gas; and a conduit (40) to supply the product gas to an outlet. A sterilization unit for water treatment employs such apparatus and includes a fluidic oscillator to oscillate the flow of oxygen and/or ozone, and wherein said outlet comprises a plurality of orifices (42) to be submerged in said water and for the purpose of forming micro bubbles of ozone. An analyzer for detecting large organic molecules in eg air can employ the ozone generator to breakdown the large molecule into simpler and easier-to-detect-and-identify molecules.
Abstract:
A gas pipe integrated block includes a plurality of internal pipe paths. The plurality of internal pipe paths are connected to a nitrogen-free ozone generator in which a photocatalytic material for generating ozone is applied to a discharge surface, a controller (an MFC, a gas filter, and an APC), a raw material gas supply port, and an ozone gas output port. Thereby, a raw material gas input pipe path extending from the raw material gas supply port through the APC to the nitrogen-free ozone gas generator, and an ozone gas output pipe path extending from the nitrogen-free ozone generator through the gas filter and the MFC to the ozone gas output port, are formed in an integrated unit.
Abstract:
A selective catalytic reduction catalyst capable of reducing the NOx in exhaust gas to N2 is arranged in an exhaust pipe of an engine. Fluid feed means has a fluid injecting nozzle facing the exhaust pipe on the exhaust gas upstream side from the selective catalytic reduction catalyst. The fluid feed means is configured such that a urea fluid that functions as a reducing agent is fed with the selective catalytic reduction catalyst from the fluid injecting nozzle to the exhaust pipe. Ozone feed means includes an ozone injecting nozzle that faces the exhaust pipe on the exhaust gas upstream side from the selective catalytic reduction catalyst, and on the exhaust gas upstream side or the exhaust gas downstream side from the fluid injecting nozzle. The ozone feed means is configured such that ozone is fed from the ozone injecting nozzle to the exhaust pipe.
Abstract:
A plasma generator (1) comprises: a liquid containing part (3) which contains a liquid (6) including water; a gas containing part (4) which contains a gas; and a partition wall part (5) that separates the liquid containing part and the gas containing part from each other and is provided with a gas passage (5a) through which the gas in the gas containing part is led to the liquid containing part. The plasma generator (1) is also provided with a first electrode (10) that is arranged in the gas containing part and a second electrode (11) that is arranged so as to be in contact with the liquid in the liquid containing part. The plasma generator (1) is further provided with: a gas supply unit (9) which supplies the gas to the gas containing part; a plasma power supply unit (13); and a liquid inflow prevention device (a control unit (14)) which prevents the liquid from flowing into the gas containing part from the liquid containing part through the gas passage.