Abstract:
A dry change water filter assembly is provided. The filter assembly includes a filter head including a water by-pass valve, and a filter body configured to removably attach to the filter head. The water by-pass valve is actuated by at least one of attaching the filter body to the filter head and removing the filter body from the filter head.
Abstract:
A filter for composite water treatment and sewage treatment includes at least two filters for sewage to pass through respectively. Each of the filters is composed of numerous ringed filaments twisted and entangled together irregularly. And, among the ringed filaments, there are also numerous interspaces formed to let sewage flow through. Each filter has a coarser diameter for its ringed filaments and a larger space for its interspaces than that positioned behind it does.
Abstract:
A compression sealable electrolysis cell that is easily and reliably manufactured, maintained and repaired comprises two insulating end pieces which can position and seal two electrode tubes with electrical contacts separated by a ceramic membrane tube where fluid can be introduced at one end piece and removed at the other end piece in the spaces between the electrode tubes and the ceramic membrane tube. The design permits the compression of the entire assembly via the fixing of nuts on one or more threaded rods extending through both end pieces without the use of an adhesive or cement and without the imposition of torque or compressive stress on the ceramic membrane tube. The water or other fluid to be electrolyzed can be introduced tangentially to spaces between the electrode tubes and the ceramic membrane tube at a angle of 0 to 15 degrees to optimize flow and contact with the electrode tubes.
Abstract:
A UV sterilizer with a double-chamber structure comprises an inner tube and an outer tube with different size, the inner tube being partly surrounded by the outer tube thereby forming an inner chamber and an outer chamber, the inner chamber is the space encircled by the inner tube and the outer chamber is the annular space encircled by the overlapped portions of the inner tube and the outer tube; a first end portion of the inner tube is located outside the outer chamber and provided with a first water port, a second end portion of the inner tube is located inside the outer chamber and provided with a second water port communicating with the outer chamber; a first end portion of the outer tube is sealingly connected with the outer wall of the inner tube, while a second end portion of the outer tube is sealed; sleeved UV lamps are arranged in the outer chamber or in both the inner chamber and the outer chamber.
Abstract:
A medium having a support structure configured for circulation of a fluid therein, such as a replaceable filter cartridge, including a sanitizing agent which contains one or more reactants that are chemically configured for delivering chlorine dioxide or other sanitizing agents in a controlled dose to sanitize, deodorize, and disinfect upon being wetted by the fluid and positioned in the medium support structure to be exposed to the fluid circulating therein.
Abstract:
EDI apparatus for demineralizing a liquid flow is assembled in a housing having a cylindrical shape, and includes two metal electrodes, and one or more leafs, each leaf comprising a pair of selectively ion-permeable membranes arranged parallel to each other and spaced apart by spacing elements that allow liquid to flow in the interstitial space between membranes, thus forming an arrangement of dilute and concentrate cells in a desired flow configuration. Spacing elements between membranes, as well as between leaves, can be formed of inert polymer material, ion exchange beads, ion exchange fibers, a combination of two or more these elements, or a porous media incorporating one or more of such elements as an intrinsic part. An inner or central electrode and an outer or perimeter electrode establish a generally uniform and radially-oriented electrical or ionic current between the inner and the outer electrodes, across the helical flow spaces defined by the membrane/spacer windings. One or both electrodes may include a pocket, and the adjacent flow cells lie parallel to the electrode and free of shadowing and field inhomogeneity around a full circumference of the electrode. Flow paths within the helical cells are defined by barrier seals, which may form a path-lengthening maze, while unfilled cell regions may disperse or collect flow within a cell and define pressure gradients promote directional flows. Impermeable barriers between membranes further prevent the feed and concentrate flows from mixing. In various embodiments, seals along or between portions of the flow path may define a multi-stage device, may define separate feed and/or concentrate flows for different stages, and/or may direct the feed and concentrate flows along preferred directions which may be co-current, counter-current or cross-current with respect to each other within the apparatus.
Abstract:
EDI apparatus for demineralizing a liquid flow is assembled in a housing having a cylindrical shape, and includes two metal electrodes, and one or more leafs, each leaf comprising a pair of selectively ion-permeable membranes arranged parallel to each other and spaced apart by spacing elements that allow liquid to flow in the interstitial space between membranes, thus forming an arrangement of dilute and concentrate cells in a desired flow configuration. Spacing elements between membranes, as well as between leaves, can be formed of inert polymer material, ion exchange beads, ion exchange fibers, a combination of two or more these elements, or a porous media incorporating one or more of such elements as an intrinsic part. An inner or central electrode and an outer or perimeter electrode establish a generally uniform and radially-oriented electrical or ionic current between the inner and the outer electrodes, across the helical flow spaces defined by the membrane/spacer windings. One or both electrodes may include a pocket, and the adjacent flow cells lie parallel to the electrode and free of shadowing and field inhomogeneity around a full circumference of the electrode. Flow paths within the helical cells are defined by barrier seals, which may form a path-lengthening maze, while unfilled cell regions may disperse or collect flow within a cell and define pressure gradients promote directional flows. Impermeable barriers between membranes further prevent the feed and concentrate flows from mixing. In various embodiments, seals along or between portions of the flow path may define a multi-stage device, may define separate feed and/or concentrate flows for different stages, and/or may direct the feed and concentrate flows along preferred directions which may be co-current, counter-current or cross-current with respect to each other within the apparatus.
Abstract:
An electrochemical cell has an inner, titanium-rod electrode (1) mounted coaxially within an outer, titanium-tube electrode (2) with a porous, ceramic tube (3) mounted coaxially between them to define coaxial, annular passageways (4,5) for liquid flow in separate streams lengthwise of the cell between respective pairs of inlet/outlet ports (6, 6; 7, 7). A cup-shape fitting (8) having a stepped-down internal diameter is clamped onto the rod electrode (1) at each end of the cell, with the tubular electrode (2) at that end held tightly sealed in the mouth (14) of the fitting (8). Each end of the ceramic tube (3) projects into the larger-diameter cavity-part (10) of the fitting (8) at that end and has a radial flange (17) that provides a sliding seal within this cavity-part (10) for keeping the inlet/outlet ports (6,7) for the respective liquid streams at that end, divided off from one another as well as allowing the ceramic tube (3) limited freedom for longitudinal sliding relative to the electrodes (1, 2).
Abstract:
A medium having a support structure configured for circulation of a fluid therein, such as a replaceable filter cartridge, including a sanitizing agent which contains one or more reactants that are chemically configured for delivering chlorine dioxide or other sanitizing agents in a controlled dose to sanitize, deodorize, and disinfect upon being wetted by the fluid and positioned in the medium support structure to be exposed to the fluid circulating therein.
Abstract:
An electrolysis apparatus includes at least two coaxially spaced electrodes, at least one of which is a coil. Currents in the coil generate a magnetic field to accelerate the electrolysis process.