Abstract:
Extrudable polystyrene foam compositions having flame retardant properties, flame retardant extruded polystyrene foams, methods of making such foams, and products comprising such compositions and foams are provided. A flame-retarded extruded polystyrene foam contains a flame retardant compound having the structure: Formula (I)
Abstract:
The present invention provides a crosslinked polyolefin-based resin-extruded foam sheet capable of reducing its thickness while retaining excellent flexibility and heat resistance. The crosslinked polyolefin-based resin foam sheet of the present invention is obtained by feeding a polyolefin-based resin and a thermally degradable blowing agent to an extruder, melting and kneading them, extruding the kneaded material through the extruder into a sheet to form an expandable polyolefin-based resin sheet, and expanding the sheet. Herein, a degree of crosslinking of the crosslinked polyolefin-based resin foam sheet is 5 to 60% by weight, an aspect ratio of a cell (MD average cell diameter/CD average cell diameter) is 0.25 to 1, and the polyolefin-based resin contains 40% by weight or more of a polyethylene-based resin obtained using a metallocene compound containing a tetravalent transition metal as a polymerization catalyst.
Abstract:
This invention presents a process whereby thermoplastic polylactic acid polymers foams having the desirable properties for manufacture of thermoformed articles may be made. It has been found that introduction of a dual functional reactive agent into the melt will improve the relevant properties of the melt and thus, the resultant foam. An example of such an agent is pyromellitic di-anhydride, but it is envisioned that a wide number of dual functional reactive agents can be utilized. It has been found that such dual functional reactive agents do not shift crystalline melt point of the material by any appreciable amount. It has been found that, by carefully controlling such a reaction, melt strength can be increased sufficiently to produce stable foam at temperatures above the melt point of the polymer, to permit the production of foamed polylactic acid polymer and product formed therefrom on conventional process equipment.
Abstract:
A blowing agent blend for making thermoplastic polymer foams includes methyl formate. The blowing agent blend can further comprise at least one co-blowing agent. The co-blowing agent is either a physical co-blowing agent (e.g. an inorganic agent, a hydrocarbon, a halogenated hydrocarbon, a hydrocarbon with polar, functional group(s), water or any combination thereof), or a chemical co-blowing agent, or combinations thereof The thermoplastic polymer foam can be an alkenyl aromatic polymer foam, e.g. a polystyrene foam. The blowing agent blend includes methyl formate and one or more co-blowing agents. The methyl formate-based blowing agent blends produce dimensionally stable foams that have improved resistance to flame spread. A process for the preparation of such foams is also provided.
Abstract:
Disclosed is a method for making polystyrene foam which utilizes one or more atmospheric gases, particularly CO2, as the blowing agent in combination with a polymer processing aid (PPA), typically an ester that is relatively non-volatile at the extrusion temperature range. The blowing agent and the PPA may both be introduced into the molten thermoplastic polystyrene resin or the PPA may be incorporated in the solid source polystyrene resins. The resulting foam will be substantially free of residual blowing agent and dimensionally stable at ambient temperatures.
Abstract:
A process for an extruded resin foam, comprising extruding a foamable composition comprising a melted polystyrene resin and a physical blowing agent through a die to obtain a polystyrene resin foam having a thickness of at least 10 mm and a transverse cross-sectional area of at least 50 cm2, wherein said extrusion is performed so that the ratio Mz/Mn of a Z average molecular weight Mz of the polystyrene resin foam to a number average molecular weight Mn of the polystyrene resin foam, each measured by gel permeation chromatography, is 8.0 or more.
Abstract:
An expandable starch-based composition includes a starch, a volatile blowing agent, a non-volatile plasticizer, nucleating agent, and a water-resistant polymer. The expandable starch-based composition can be characterized by having a plasticized starch capable of expanding when rapidly heated to above the boiling point of the volatile blowing agent and the softening point of the plasticized starch. The composition can be used in a method of manufacturing an expandable starch-based bead, wherein the method includes: introducing the composition into an extruder; heating and mixing the composition in order to yield a thermoplastic melt; extruding the thermoplastic melt through a die opening to yield an extruded strand; cooling the extruded strand; and cutting the cooled strand in to beads. The beads can be used in a method of manufacturing a biodegradable article, the method includes: providing a plurality of expandable starch-based beads; placing the beads into a mold cavity; rapidly heating the beads to a temperature greater than the boiling point of the volatile blowing agent; causing at least a portion of the expanded beads to adhere together to form an intermediate molded body; and cooling the intermediate molded body to yield the article of manufacture.
Abstract:
A macrocellular foam is described having improved cell size and Fire-test-response Characteristics, among other features, which is obtained by selecting a particle size less than 1 micron for the flame retardant adjuvant. The inventors found that the amount of fire retardant adjuvant can be increased for a given foam cell size or the foam cell size can be increased for a given amount of fire retardant adjuvant, allowing the production of foams having exceptionally large, well-formed, cells that have excellent Fire-test-response Characteristics. The benefits are especially noteworthy in relation to thermoplastic foams and inorganic flame retardation adjuvants, due to the unexpected reduction in the nucleation effect of the adjuvant. The foams are useful for improving the acoustic performance of products that are required to meet certain Fire-test-response Characteristics. It may be used in automotive and other transportation devices, building and construction, household and garden appliances, power tool and appliance and electrical supply housing, connectors, and aircraft as acoustic systems for sound absorption and insulation.
Abstract:
An extrusion profile comprising a thermoplastic polymer is disclosed. The thermoplastic polymer, preferably polyamide, more preferably reinforced with glass fibers is characterized in that the polymer contains pores, having an average size of about 0.1 to 0.5 mm and that its density is at most 1 g/cm3. The profile is suitable as heat-insulating fastening web, in particular for the production of windows based on metal profiles.
Abstract translation:公开了包含热塑性聚合物的挤出轮廓。 更优选用玻璃纤维增强的热塑性聚合物,优选聚酰胺的特征在于,聚合物含有孔,其平均尺寸为约0.1至0.5mm,其密度为至多1g / cm 3 >。 该型材适合作为隔热紧固纤维网,特别是用于生产基于金属型材的窗户。
Abstract:
The present invention relates to a pellet-type non-crosslinked polypropylene foam having a melting point of 125 to 140° C., and a process and device for producing said foam. Since the pellet-type foams of non-crosslinked polypropylene of the present invention has a lower melting point and a closed cell content of 80% or more, it is advantageous to mold such foams. The present invention also relates to an article molded from the above pellet-type non-crosslinked polypropylene foams.