Abstract:
A light-attenuation-ratio measurement method according to the present disclosure includes: a first step of placing a first light attenuator and a second light attenuator between a light source and a light-receiving portion and measuring a first intensity of transmitted light that has passed through the light attenuators, the first intensity being within a light-receiving sensitivity of the light-receiving portion; a second step of placing the second light attenuator and a target light attenuator between the light source and the light-receiving portion and measuring a second intensity of transmitted light that has passed through the light attenuators, the second intensity being within the light-receiving sensitivity of the light-receiving portion; and a third step of calculating a light attenuation ratio of the target light attenuator by multiplying or dividing an intensity ratio between the first intensity and the second intensity by a light attenuation ratio of the first light attenuator.
Abstract:
A spectral imaging device (12) for generating an image (13A) of a sample (10) includes (i) an image sensor (30); (ii) a tunable light source (14) that generates an illumination beam (16) that is directed at the sample (10); (iii) an optical assembly (22) that collects light from the sample (10) and forms an image of the sample (10) on the image sensor (30); and (iv) a control system (32) that controls the tunable light source (14) and the image sensor (30). During a time segment, the control system (32) (i) controls the tunable light source (14) so that the illumination beam (16) has a center wavenumber that is modulated through a first target wavenumber with a first modulation rate; and (ii) controls the image sensor (30) to capture at least one first image at a first frame rate. Further, the first modulation rate is equal to or greater than the first frame rate.
Abstract:
A measuring instrument for detection of electrical properties in a liquid includes a main body configured to hold a tester, a first pole extending from the main body, and a second pole extending from the main body that is spaced apart from the first pole. The first pole carries a positive probe for attachment to the tester, and the second pole carries a negative probe for attachment to the tester. When the probes are placed in the liquid, electrical properties in the liquid are detected by the tester.
Abstract:
A mobile electronic device 1 includes a plurality of sensors, a detector that detects a biological reaction by one of the sensors, and at least one controller 10 that performs control to change a detection cycle of other sensors according to whether the biological reaction is detected.
Abstract:
A spectral imaging device (12) includes an image sensor (28), a tunable light source (14), an optical assembly (17), and a control system (30). The optical assembly (17) includes a first refractive element (24A) and a second refractive element (24B) that are spaced apart from one another by a first separation distance. The refractive elements (24A) (24B) have an element optical thickness and a Fourier space component of the optical frequency dependent transmittance function. Further, the element optical thickness of each refractive element (24A) (24B) and the first separation distance are set such that the Fourier space components of the optical frequency dependent transmittance function of each refractive element (24A) (24B) fall outside a Fourier space measurement passband.
Abstract:
Provided herein is a dust measuring apparatus. The dust measuring apparatus includes: a body; a window unit exposed to the outside through an opening part of the body, such that dust present in the outside is gathered on the window unit; a light emitting unit emitting light to the window unit; a light receiving unit receiving light reflected from the window unit; and a controlling unit measuring an amount of dust gathered on the window unit on the basis of strength of the emitted light and strength of the received light.
Abstract:
Systems and methods for detecting and/or identifying target cells (e.g., bacteria) using engineered transduction particles are described herein. In some embodiments, a method includes mixing a quantity of transduction particles within a sample. The transduction particles are associated with a target cell. The transduction particles are non-replicative, and are engineered to include a nucleic acid molecule formulated to cause the target cell to produce a series of reporter molecules. The sample and the transduction particles are maintained to express the series of the reporter molecules when target cell is present in the sample. A signal associated with a quantity of the reporter molecules is received. In some embodiments, a magnitude of the signal is independent from a quantity of the transduction particle above a predetermined quantity.
Abstract:
A thermal imaging system is provided. The thermal imaging system includes an explosion-proof housing with an optical window configured to contain an explosive pressure. The optical window allows electromagnetic thermal energy to pass. A thermal imaging sensor is disposed within the explosion-proof housing. Thermal imaging electronics are coupled to the thermal imaging sensor and configured to provide at least one thermal image based on a signal from the thermal imaging sensor. A lens assembly is disposed at least in front of the optical window external to the explosion-proof housing. A composite optical window for thermal imaging is also provided. In another embodiment, a thermal imaging system includes an explosion-proof housing having an optical window configured to contain an explosive pressure. An infrared (IR) camera is disposed within the explosion-proof housing. A reflector reflects electromagnetic thermal energy to the IR camera, but prevent an object from impacting the optical window.
Abstract:
There is provided a focus detection apparatus including: microlenses; light reception units that receive light which is incident through the microlenses; waveguides that cause light, which is incident to the microlenses at a predetermined angle, to be received by the light reception units and that are provided between the microlenses and the light reception units; and a detection unit that detects focusing using output values from the light reception units.
Abstract:
Aspects of the present disclosure relate to a security device, in particular, a multilayered security device. The multilayered security device includes a substrate layer having a first substrate. The substrate layer attaches to the product. The multilayered security device also includes a graphene layer. The graphene layer has a first continuous graphene sheet that is made of a monolayer of covalently-bonded carbon atoms. The graphene layer also forms, in response to exposure to a verification stimulus, a contrasting pattern with respect to an exposed substrate area from the substrate layer.