Abstract:
A liquid crystal display (LCD) is provided and includes an liquid crystal panel, a diffraction plate, a first polarizer, a second polarizer, a first brightness enhancement film (BEF), and a second BEF. The diffraction plate is disposed on a first surface of the liquid crystal panel and has a diffractive direction. The first polarizer is disposed between the diffraction plate and the liquid crystal panel and has a first absorption axis. The second polarizer is disposed on a second surface of the liquid crystal panel opposite to the first surface and has a second absorption axis perpendicular to the first absorption axis. The first BEF has a first light-collecting direction. The second BEF has a second light-collecting direction perpendicular to the first light-collecting direction. The first light-collecting direction is parallel or perpendicular to the diffractive direction or the first absorption axis.
Abstract:
A device for frequency conversion of a first laser beam generated with a first frequency. The device has a first crystal for generating a second laser beam having a second frequency, which differs from the first frequency. The second laser beam propagates parallel to the first laser beam after leaving the first crystal. A second crystal, which generates from the first and second laser beams a third laser beam having a different third frequency. An optical deflection device influences the relative beam position between first and second laser beams such that the first and second laser beams, before entering into the second crystal, propagate at an angle with respect to one another, which angle differs from zero, and enter in a manner spaced apart from one another at an entrance surface of the second crystal and intersect within the second crystal with at the same time collinear phase matching.
Abstract:
A display device and driving method thereof are disclosed. The display device includes a display screen, including a plurality of sub-pixels arranged in the form of a matrix, colors of the sub-pixels in the same column including all colors necessary for display by the display screen; a grating disposed on top of the display screen, including light-transmissive regions and light-shading regions that are arranged alternately, the light-transmissive regions being in parallel to each column of the sub-pixels; a rolling structure, located between the display screen and the grating; and a push mechanism, for pushing the grating and/or the display screen, so that relative position of the grating and the display screen is switchable between a first state and a second state, and switchover between a dual viewing field display effect and an anti-spy display effect is achieved for the display device.
Abstract:
A device for frequency conversion of a first laser beam generated with a first frequency. The device has a first crystal for generating a second laser beam having a second frequency, which differs from the first frequency. The second laser beam propagates parallel to the first laser beam after leaving the first crystal. A second crystal, which generates from the first and second laser beams a third laser beam having a different third frequency. An optical deflection device influences the relative beam position between first and second laser beams such that the first and second laser beams, before entering into the second crystal, propagate at an angle with respect to one another, which angle differs from zero, and enter in a manner spaced apart from one another at an entrance surface of the second crystal and intersect within the second crystal with at the same time collinear phase matching.
Abstract:
A structure of an optical grating coupler for tuning the center wavelength of signals which are propagated to a waveguide by changing the effective refractive index of the optical grating coupler is provided. The optical grating coupler includes a region for changing the effective refractive index of the optical grating coupler, which is included in the inside or outside of the optical grating coupler. The region receives a signal for changing the effective refractive index of the optical grating coupler.
Abstract:
A liquid crystal panel (2) is a vertical alignment type liquid crystal panel using a horizontal electric field driving system which performs display by driving a liquid crystal layer (50) interposed between substrates (10, 20) in a horizontal electric field, each pixel includes three sub-pixels (6R, 6G, and 6B), which are of red, green, and blue, comb-shaped electrodes (14, 15) include a function as a diffraction grating with the comb-shaped electrodes (14, 15) and spaces between the comb-shaped electrodes (14, 15), and pitch distances (D) between electrodes are set such that an optical diffraction efficiency for red wavelength and an optical diffraction efficiency for green wavelength are greater than an optical diffraction efficiency for blue wavelength. Thus, it is possible to provide a liquid crystal panel and a liquid crystal display apparatus having a wide viewing angle with less color change with a simple configuration.
Abstract:
An eye tracker having a waveguide for propagating illumination light towards an eye and propagating image light reflected from at least one surface of an eye, a light source optically coupled to the waveguide, and a detector optically coupled to the waveguide. Disposed in the waveguide is at least one grating lamina for deflecting the illumination light towards the eye along a first waveguide path and deflecting the image light towards the detector along a second waveguide path.
Abstract:
A display apparatus is provided. The display apparatus comprises a liquid crystal display device, a first polarizer and a diffractive optical element. The first polarizer is disposed on a light emitting side of the liquid crystal display device. An azimuth angle of a polarizing direction of the first polarizer is 90 degrees. The diffractive optical element is disposed on the light emitting side of the liquid crystal display device and comprises at least a first diffraction grating. An azimuth angle of a grating direction of the first diffraction grating is 10±30 degrees or 85±25 degrees.
Abstract:
An apparatus for providing an optical display includes an optical substrate for propagating light received from a light source, a first set of one or more switchable diffractive elements in the substrate, and a second set of one or more switchable diffractive elements in the substrate. Each diffractive element in the second set corresponds to a diffractive element in the first set. Each of the diffractive elements in the first and second sets is configured to switch between on and off states. One of the states is for diffracting light and the other state for allowing light to pass through. Each of the first set of diffractive elements is configured to diffract the light at an angle for propagation in the substrate. Each of the second set of diffractive elements is configured to diffract the light for display.
Abstract:
An acousto-optical filter element (114) is provided which has an acousto-optical crystal (118) having an acoustic signal transmitter (120) for generating acoustic signals in the acousto-optical crystal (118). The acousto-optical crystal (118) is designed to selectively spatially deflect light of a target wavelength from an input light beam (116) entering into the acousto-optical crystal (118), as a function of a high frequency applied to the acoustic signal transmitter (120), and to thereby produce a target light beam (126) having the target wavelength. In addition, the acousto-optical filter element (114) includes a spatial filter element (132) which is located in the target light beam (126) and is designed to selectively suppress the intensity of the target light beam (126) in a plane perpendicular to the propagation direction of the target light beam (126).