Abstract:
A pressure-measuring vessel system for microwave assisted chemical processes is disclosed. The vessel system includes a pressure resistant vessel that is otherwise transparent to microwave radiation, a pressure-resistant closure for the mouth of the vessel, with portions of the closure including a pressure resistant synthetic membrane, a pressure transducer external to the vessel, and a tube extending from the transducer, through the membrane and into the vessel for permitting the pressure inside the vessel to be applied against the transducer while the closure and membrane otherwise maintain the pressure resistant characteristics of the vessel.
Abstract:
A closure assembly 10 contains positive and/or vacuum pressure within a pressure vessel 16 having a neck 12. A circumferential locking member 22 supported on a door 20 locks the door to the neck, and is radially moveable between an open position and a closed position. A seal 26 between the neck and the door maintains fluid-tight integrity. A lever or other hand powered operator may be used for moving the locking member between the open position and the closed position. The locking member may include locking segments interconnected to form the circumferential locking member.
Abstract:
An extrusion system utilizes single or tandem extruders and a mixer-cooler to extrude a foamable extrudate through a die in a sealable chamber. The foamable extrudate is shaped and calibrated within the chamber. The die is mounted on the end of a gel tube projecting through a gland seal in a fixed bulkhead forming the upstream end of the chamber. The gel tube and mixer-cooler are mounted on a movable carriage, movement of which may be used to adjust the die with respect to shaping and calibrating equipment inside the chamber. The mixer-cooler achieves a selected narrow range of uniform viscosity of the melt at the die depending on the size of the product and density. The chamber is preferably a vacuum chamber producing low density foams. The product exits the chamber to atmosphere on a continuous basis through a submerged orifice in a water baffle immersion seal. The mixer-cooler enables a large size low density product to be produced with uniform cellular structure without cell collapse or density gradients, as the product is subjected to the pressure and temperature transformations passing from the chamber to atmosphere through the water. The seal includes the submerged orifice with a free wheeling guiding system upstream of the orifice. Immediately ahead of the guiding system, the parameters of the foam extrudate are sensed to control the configuration of the orifice on a continuous basis. Before the extrudate passes into the water baffle seal it moves over a floating dancer roll, the position of which controls a haul-off such as a vacuum belt at the tail end of the system. This avoids pushing on the extrudate.
Abstract:
The specification describes a method for producing black phosphorus from red phosphorus by thermally cycling red phosphorus in a vacuum between 360-400.degree. C. and 200-240.degree. C., whereupon the red phosphorous undergoes an allotropic phase change to black phosphorus.
Abstract:
An extrusion system utilizes single or tandem extruders and a mixer-cooler to extrude a foamable extrudate through a die in a sealable chamber. The foamable extrudate is shaped and calibrated within the chamber. The die is mounted on the end of a gel tube projecting through a gland seal in a fixed bulkhead forming the upstream end of the chamber. The gel tube and mixer-cooler are mounted on a movable carriage, movement of which may be used to adjust the die with respect to shaping and calibrating equipment inside the chamber. The mixer-cooler achieves a selected narrow range of uniform viscosity of the melt at the die depending on the size of the product and density. The chamber is preferably a vacuum chamber producing low density foams. The product exits the chamber to atmosphere on a continuous basis through a submerged orifice in a water baffle immersion seal. The mixer-cooler enables a large size low density product to be produced with uniform cellular structure without cell collapse or density gradients, as the product is subjected to the pressure and temperature transformations passing from the chamber to atmosphere through the water. The seal includes the submerged orifice with a free wheeling guiding system upstream of the orifice. Immediately ahead of the guiding system, the parameters of the foam extrudate are sensed to control the configuration of the orifice on a continuous basis. Before the extrudate passes into the water baffle seal it moves over a floating dancer roll, the position of which controls a haul-off such as a vacuum belt at the tail end of the system. This avoids pushing on the extrudate.
Abstract:
The brazing filler of the present invention is excellent in wetting properties towards the open end of a ceramic cylinder and a metal sealing cap can be sealed well on the open end. The present brazing filler comprises Ag, Cu and active metal, in which the Cu-active metal compound is contained in an amount of not more than 40% by volume.
Abstract:
A high vacuum housing with a first and second housing part and in which the housing parts are secured together to form an interior housing chamber. In order to seal the housing parts, an annular outwardly extending sealing ring having a flat radial surface is formed on one of the housing parts. An annular alignment recess is formed on the other housing part which registers with and receives the alignment ring. A thin walled seal is disposed between the housing parts. When the housing parts are secured together by bolts, an outer periphery of the seal is compressibly sandwiched between the flat radial surface on the sealing ring and the flat surface on the second housing part thus sealing the window to the housing.
Abstract:
The present invention is an apparatus for separating volatile from nonvolatile substances, separation of volatile substances, one from the other, and for performing various chemical reactions. In particular, an apparatus which performs these functions utilizing a combination of above ambient temperatures and above one inch of mercury vacuum within a rotating vessel. The apparatus uses a conventional rotary vacuum seal. The apparatus, however, operates well above the maximum operating temperature of the conventional rotary vacuum seal by isolating and cooling the conventional rotary vacuum seal.
Abstract:
There is a gap between the respective inner regions of the end face of the cylindrical side wall and the abutting portion of the top plate, which are situated inside the seal member. Even though the top plate is bent inward by atmospheric pressure when the container is decompressed to a predetermined degree of vacuum, therefore, the abutting portion thereof cannot come into contact with the inner edge of the end face of the cylindrical side wall. Thus, if decompression and exposure to atmospheric pressure are repeated to bend the cylindrical side wall repeatedly, there is no possibility of the inner edge portion of the end face of the cylindrical side wall being separated or rubbed off to produce dust. Moreover, the cylindrical side wall and top plate are joined together in the region outside the seal member. If dust is produced by the contact between the cylindrical side wall and top plate at their junctions outside the seal member, therefore, it is prevented from entering the container by the seal member. Thus, a clean atmosphere in the container cannot be contaminated by the dust.
Abstract:
A light-weight super high vacuum vessel is disclosed in which a super high vacuum pressure over 10.sup.-10 Torr or over 10.sup.-11 Torr can be achieved using a simple evacuation system and/or with a sealing structure. The super high vacuum vessel contains a member comprising: from 0.02 wt. % to 1.00 wt. % of at least one platinum-group metal selected from the group consisting of Pd, Pt, Rh, Ru, Re, and Os; from 0.1 wt. % to 3.0 wt. % of at least one transition metal selected from the group consisting of Co, Fe, Cr, Ni, Mn, and Cu; from 0.02 wt. % to 0.50 wt. % of at least one rare earth series element selected from the group consisting of La, Ce, Pr, Nd, Sm, Gd, Tb, Dy, Ho, Er, and Y; impurity elements of C, N, and O, C being equal to or less than 0.05 wt. %, N being equal to or less than 0.05 wt. %, O being equal to or less than 0.08 wt. %; and Ti and inevitable impurities.