Abstract:
A polymer with a backbone having at least one structural unit represented by formula (I): Wherein R1, R2, R3, R4, and R5 independently denote one of a hydrogen atom, a substituted or unsubstituted alkyl group, a substituted or unsubstituted cycloalkyl group, or a substituted or unsubstituted alkenyl group, and n preferably denotes an integer from 1 to 10.
Abstract translation:具有骨架的聚合物具有至少一个由式(I)表示的结构单元:其中R 1,R 2,R 3,R R 5和R 5独立地表示氢原子,取代或未取代的烷基,取代或未取代的环烷基或取代或未取代的烯基中的一个,以及 n优选表示1〜10的整数。
Abstract:
An oxygen scavenger composition includes mer units that have at least one cycloalkenyl group or functionality and, further, has mer units derived from isophthalic acid or terephthalic acid or certain derivatives thereof. The oxygen scavenger composition has been found to act as an oxygen scavenger under both ambient and refrigeration conditions, to be compatible with conventional film forming packaging materials, to inhibit undesirable oligomer formation and oxidation by-product formation, and to be readily formable and processable using conventional film forming equipment. A film and laminated product having said oxygen scavenger composition are also disclosed.
Abstract:
The present invention provides an Oxygen scavenging composition as a concentrate master batch to act as active and passive barrier, said composition comprising a resin carrier which is an alloy of PET with PTN, or PBN or PBT, mixed micron sized and nano-sized iron particles, an alkali metal bisulphate and ascorbate, a metal halide and additives. The iron particle mixture with a particle size in the range of 1 to 50 micron along with nano sized iron particles of 5 to 50 nanometers (nm) having an additional enhanced rate of oxygen absorption. The oxygen scavenging composition also includes metal halide and ascorbates and bisulphates of alkali metals. The oxygen scavenging composition of the present invention as a master batch in a polyester carrier resin containing barrier, color and U.V. light absorbing additives is used in food packaging applications of human consumption, especially those oxygen sensitive food items including alcoholic beverages, fruit beverages etc, where the oxygen permeation levels are to be maintained at very low levels.
Abstract:
A method includes triggering an oxygen scavenger; and storing the scavenger in a container configured such that the oxygen scavenger exhibits no substantial oxygen scavenging activity while inside the container. The triggered oxygen scavenger can later be removed from the container, and used in packaging oxygen sensitive products. A stored oxygen scavenger, triggered, is also disclosed. A method of distributing an oxygen scavenger film includes providing a tubular film at a first location, the film having oxygen barrier and oxygen scavenger layers; triggering the oxygen scavenger; collapsing the film; rolling up the film; transporting the film to a second location; and triggering the oxygen scavenger. Another method of distributing an oxygen scavenger film includes providing an oxygen scavenger film at a first location; transporting the film to a second location; triggering the oxygen scavenger; storing the oxygen scavenger film in a container; and transporting the film to a third location.
Abstract:
The object of the present invention is to provide an oxygen-absorbing resin composition having a high oxygen absorbability and capable of absorbing oxygen for a long period of time. The present invention provides an oxygen-absorbing resin composition comprising polyolefin resin (A) obtained by polymerizing an olefin having 2 to 8 carbon atoms, resin (B) which is other than resin (A) and which acts as a trigger for the oxidation of resin (A), and transition metal catalyst (C), wherein resin (B) is dispersed in the matrix of resin (A) so that the oxidation reaction of matrix resin (A) is caused and thus oxygen is absorbed when the oxygen-absorbing resin composition is brought into contact with oxygen. This oxygen absorbing resin composition has a high oxygen absorbability and is advantageous in cost because oxygen is absorbed in resin (A).
Abstract:
A method for triggering an oxygen scavenging composition for use in packaging an oxygen sensitive article includes the steps of providing an oxygen scavenging composition comprising an oxidizable organic compound and, optionally, a transition metal catalyst, and exposing the composition to a source of pulsed light wherein each pulse has a duration of between 1 microsecond and 1 millisecond, a frequency of between 0.1 to 100 Hertz, and a total intensity of at least 350 mW/cm2 so that each pulse provides the composition with a dose of UV light of at least 0.1 J/cm2 so as to provide a triggered composition. The triggered composition can be applied to an article so as to provide an oxygen scavenging package. An apparatus and packaging system are also disclosed.
Abstract translation:用于触发用于包装氧敏感物品的除氧组合物的方法包括提供包含可氧化有机化合物和任选的过渡金属催化剂的氧清除组合物并将组合物暴露于脉冲光源的步骤,其中 每个脉冲具有1微秒和1毫秒之间的持续时间,0.1至100赫兹之间的频率和至少350mW / cm 2的总强度,使得每个脉冲为组合物提供一个 剂量为至少0.1J / cm 2的UV光,以提供触发组合物。 可以将触发的组合物施用于制品以提供除氧包装。 还公开了一种装置和包装系统。
Abstract:
The present invention provides a thermoplastic resin composition having excellent oxygen absorption property. This thermoplastic resin composition comprises a thermoplastic resin (A), a multilayered polymer particle (B) and a transition metal salt (C), wherein the multilayered polymer particle (B) has at least one oxygen absorption layer, the oxygen absorption layer comprises a diene polymer (B1) containing a conjugated diene monomer as a polymerization component, and the transition metal salt (C) is contained in an amount of 1 to 5000 ppm in terms of a metal element thereof.
Abstract:
A packaging material having an oxygen-absorbing layer of a thermoplastic resin which is blended with an organic oxidizing component and with a transition metal catalyst, wherein the thermoplastic resin is not substantially oxidized in the presence of the transition metal catalyst. The thermoplastic resin is not deteriorated by oxidation and, hence, oxygen-barrier property is not deteriorated, making it possible to stably suppress the permeation of oxygen over extended periods of time.
Abstract:
Methods of initiating oxygen scavenging are disclosed herein that rely on heat triggering. An oxygen scavenging composition that comprises an oxidizable organic compound and a transition metal catalyst is heated to an extent sufficient to initiate oxygen scavenging. Heat triggering can take place during the manufacture of a film or a packaging article from an oxygen scavenging composition, or it can take place after the film or packaging article has been manufactured.
Abstract:
Oxygen-scavenging polymers and packaging for holding oxygen-sensitive products. A heat treatment process has been found to significantly increase the oxygen-scavenging performance of the polymer. The enhanced scavenging polymer can be effectively incorporated into various packaging, including transparent multilayer containers for beer and juice. In one embodiment, a multilayer package made from the scavenger provides an actual reduction in oxygen content of a contents of the package, over a long period of time (e.g., 24 weeks). The package can be stored unfilled for an extended period (without significant loss of scavenging capability) and will scavenge substantially immediately upon filling with a liquid product. The package may incorporate a relatively low weight percentage of the scavenger, thus providing enhanced scavenging in a cost-effective manner.