Abstract:
The invention proposes an autonomous robot, such as an autonomous lawn mower, comprises at least one camera for obtaining at least one input image, a communication interface for transmitting the input image and receiving a remote control instruction, a control unit for controlling an operation of the autonomous robot, and wherein the control unit is adapted to control the operation at the autonomous robot in response to the received remote control instruction.
Abstract:
A navigation system for a robotic mower includes a boundary wire defining a boundary of a specified area; a boundary sensor assembly, and a vehicle control unit with a navigation arbitration logic configured to arbitrate a selection between at least a straight propagation mode and an arc propagation mode. The navigation arbitration module is configured to select the arc propagation mode when the sensor assembly indicates that the mower approaches the boundary of the specified area and has a distance from the boundary that is equal to or smaller than a specified turn distance. The boundary sensor assembly generates a sensor signal representative of a measured yaw angle of the mower relative to the boundary wire, and the navigation arbitration logic is configured to generate output information representative of a desired yaw angle dependent on an assumed actual yaw angle.
Abstract:
A lift detection arrangement (100, 200) in a robotic lawnmower for detecting a lift of a body (110, 210) relative a chassis (105, 205) of the robotic lawnmower is provided. The lift detection arrangement (100, 200) comprises a connection between the chassis (105, 205) and the body (110, 220). The connection comprises a joystick element (115, 215) 5 arranged to allow a displacement of the body (1110, 210) relative the chassis (105, 205) in a collision plane during a collision, and a lift element (120, 220) arranged to provide a flexibility between the chassis (105, 205) and the body (110, 210) in a lift direction during the lift. The lift detection arrangement (100, 200) further comprises a lift sensor configured to detect a displacement over a predetermined threshold of the lift element (120, 220) 10 during the lift by detecting a change in spacing between two sensor parts (125, 126, 225, 226). One of the two sensor parts (125, 126, 225, 226) is arranged on the lift element and the two sensor parts (125, 126, 225, 226) are arranged to be relatively displaceable only in the lift direction.
Abstract:
The invention relates to a robotic vehicle (1), in particular a robotic vehicle (1) designed for self-contained operations, with drive means (5) for the movement of the vehicle (1) on the subsurface (11), and with control means (7) for the activation of the drive means (5) in accordance with the measured intensity of the infrared radiation. According to the invention, a light sensor (9) is provided to detect the intensity of light radiation from the visible spectrum reflected from the subsurface (11), and in addition the control means (7) are designed to activate the drive means (5) in accordance with the measured intensity of the light radiation. The invention further relates to a method of activation.
Abstract:
A method for energy management in a robotic device includes providing a base station for mating with the robotic device, determining a quantity of energy stored in an energy storage unit of the robotic device, and performing a predetermined task based at least in part on the quantity of energy stored. Also disclosed are systems for emitting avoidance signals to prevent inadvertent contact between the robot and the base station, and systems for emitting homing signals to allow the robotic device to accurately dock with the base station.
Abstract:
The different illustrative embodiments provide a system for autonomous machine management comprising a number of autonomous machines, a number of nodes, a performance estimation module, and a navigation system. The number of autonomous machines is configured to perform area coverage tasks in a worksite. The number of nodes is configured to define a number of worksite areas for the worksite. The performance estimation module is executed by a processor unit and configured to calculate a percentage of work completed in the number of worksite areas. The navigation system is configured to operate an autonomous machine to perform the area coverage tasks and move between the number of worksite areas.
Abstract:
In an apparatus for controlling an autonomous operating vehicle having a prime mover and operating machine, it is configured to have a geomagnetic sensor responsive to magnets embedded in the area, detect angular velocity generated about z-axis in center of gravity of the vehicle, detect a wheel speed of the driven wheel, store map information including magnet embedded positions, detect a primary reference direction, detect a vehicle position relative to the magnet, and detect a vehicle position in the area, calculate a traveling direction and traveled distance of the vehicle, and control the operation performed through the operating machine in the area in accordance with a preset operation program based on the detected direction, the detected position of the vehicle in the area, the calculated traveling direction and the calculated traveled distance.
Abstract:
A method of establishing an area of confinement and an autonomous robot for performing a task within the area of confinement. In one aspect, the invention can be a method of defining an area of confinement for an autonomous robot comprising: a) positioning the autonomous robot at a first location point P1, the autonomous robot comprising a location tracking unit, and recording the first location point P1 within a memory device; b) moving the autonomous robot from the first location point P1 to a plurality of location points P2-N and recording each of the plurality of location points P2-N within the memory device; and c) defining, with a central processing unit, a first closed-geometry comprising the first location point P1 and the plurality of location points P2-N as a perimeter of the area of confinement within the memory device.
Abstract:
A robotic mower sensor assembly for detecting a boundary wire signal. The sensor assembly includes a plurality of analog inductive sensors with a first inductive sensor oriented along a first axis and a second inductive sensor oriented along a second, different axis. Each inductive sensor is configured to generate a signal indicative of the distance of the robotic mower from the boundary wire. A control unit communicating with the sensor assembly is configured to operate the robotic mower in response to the signals from the sensor assembly which are indicative of the distance of the robotic mower from the boundary wire.