Abstract:
In managing incoming bus traffic storage for store cell memory (SCM) in a sequential-write, random-read system, a priority encoder system can be used to find a next empty cell in the sequential-write step. Each cell in the SCM has a bit that indicates whether the cell is full or empty. The priority encoder encodes the next empty cell using these bits and the current write pointer. The priority encoder can also find next group of empty cells by being coupled to AND operators that are coupled to each group of cells. Further, a cell locator selector selects a next empty cell location among priority encoders for cell groups of various sizes according to an opcode by appending ‘0’s to cell locations outputs from priority encoders that are smaller than the size of the SCM.
Abstract:
An apparatus includes an interface circuit coupled to an electronic device. The interface circuit provides source synchronous communication with the electronic device using a strobe signal. The interface circuit is configured to gate the strobe signal in order to successfully communicate with the electronic device.
Abstract:
A circuit arrangement for reading out data time delayed from a semiconductor memory comprises a common data input at which read data, which are read out of a semiconductor memory, are present and a data buffer FIFO for buffering the read data. The buffer FIFI comprises a plurality of FIFO modules each comprising a plurality of individual FIFO cells. Each FIFO module can be addressed via respective allocated first input and output pointers and each FIFO cell can be addressed via respective allocated second input and output pointers. The circuit arrangement further comprises a controllable read latency generator generating the first and second output pointers for driving the FIFO modules and FIFO cells with a read latency predetermined with reference to the first and second input pointers, respectively, and a common data output at which the read data are present time-delayed in dependence on the predetermined read latency.
Abstract:
Selecting circuits for columns of an array of memory cells are used to hold read data or write data of the memory cells. In a first set of embodiments, a shift register chain, having a stage for columns of the array, has the columns arranged in a loop. For example, every other column or column group could be assessed as the pointer moves in first direction across the array, with the other half of the columns being accessed as the pointer moves back in the other direction. Another set of embodiments divides the columns into two groups and uses a pair of interleaved pointers, one for each set of columns, clocked at half speed. To control the access of the two sets, each of which is connected to a corresponding intermediate data bus. The intermediate data buses are then attached to a combined data bus, clocked at full speed.
Abstract:
Selecting circuits for columns of an array of memory cells are used to hold read data or write data of the memory cells. In a first set of embodiments, a shift register chain, having a stage for columns of the array, has the columns arranged in a loop. For example, every other column or column group could be assessed as the pointer moves in first direction across the array, with the other half of the columns being accessed as the pointer moves back in the other direction. Another set of embodiments divides the columns into two groups and uses a pair of interleaved pointers, one for each set of columns, clocked at half speed. to control the access of the two sets, each of which is connected to a corresponding intermediate data bus. The intermediate data buses are then attached to a combined data bus, clocked at full speed.
Abstract:
According to an example embodiment, a memory diagnosis test circuit may include a memory core block, a word line selector, a bit line selector, and/or an analog mode control unit. The memory core block may include a plurality of memory cells. The word line selector may be configured to select one of a plurality of word lines of the memory core block using a first shift register. The bit line selector may be configured to select one of a plurality of bit line pairs of the memory core block using a second shift register. The analog mode control unit may be configured to monitor data corresponding to the selected word line and bit line pair.
Abstract:
An array of non-volatile memory cells arranged in logical columns and logical rows, and associated circuitry to enable reading or writing one or more memory cells on a row in parallel. In some embodiments, the array of memory cells may include a phase change material. In some embodiments, the circuitry may include a write driver, a read driver, a sense amplifier, and circuitry to isolate the memory cells from the sense amplifier with extended refresh. In some embodiments, the circuitry may further include shift registers and one or more arithmetic logic units to provide a video memory.
Abstract:
Selecting circuits for columns of an array of memory cells are used to hold read data or write data of the memory cells. The memory cells may be multistate memory cells. There is a shift register chain, having a stage for columns of the array. A strobe pulse is shifted through this shift register. The strobe points, with each clock, at and enables a different selecting circuit in sequence. That particular selecting circuit that has been enabled by the strobe will then perform a certain function. In a read mode, the selected selecting circuit will send the stored information through to the output buffer for output from the integrated circuit. And while in a programming mode, the selected selecting circuit will receive data from an input buffer. This data will be written into a memory cell.
Abstract:
A semiconductor device and a data storage apparatus are provided. A semiconductor device includes: a cell array configured to have cells for data storage arranged in an array; at least one buffer configured to latch read data of the cell array in units of pages; an output circuit configured to output read data; and a data transfer circuit configured to sequentially transfer read data in units of pages latched in the buffer to the output circuit, wherein the data transfer circuit includes: at least one layer of a scan register train including a plurality of serially connected scan registers having a register and a multiplexer connected to each other to operate for each of clocks, wherein an output of the multiplexer is connected to an input of a register, and an input of a multiplexer is connected to an output of a register in a next previous stage.
Abstract:
Reducing power consumption of a semiconductor memory device having a serial interface is disclosed. After parallel read-out data from a memory-cell matrix 14 are held in a data latch 17, the parallel read-out data are selected sequentially by a serial output selector 18 according to timing signals SL0-SL15 from a controller 20 and are outputted serially from an output buffer 19 as an output data DO. In an activating control unit 23, outputting an operation control signal AC to a gate-voltage generating unit 21, a drain-voltage generating unit 22, and a sense amplifier 16 is being halted during from when a timing signal SL0 is finished to when a timing SL10 is finished. Consequently, during the above mentioned period, the unnecessary operations of the gate-voltage generating unit 21, the drain-voltage generating unit 22, and the sense amplifier 16 are being halted and then the power consumption thereof can be reduced.