Abstract:
The present disclosure discloses a conferencing apparatus that combines a beamforming microphone array (BMA) with an acoustic echo canceller where the BMA further comprises a plurality of microphones that are oriented to develop a corresponding plurality of microphone signals. The apparatus further includes a processor, memory, and storage where the processor is configured to execute program instructions. The processor performs a beamforming operation to create a plurality of combined signals. In addition, the processor performs an acoustic echo cancellation operation to generate a plurality of combined echo cancelled signals. Further, the processor selects one of the combined echo cancelled signals for transmission to the far end where the signal selection module uses the far end signal as information to inhibit the signal selection module from changing the selection of the combined echo cancelled signals while only the far end signal is active.
Abstract:
A method of detecting a user's voice activity in a headset with a microphone array is described herein. The method starts with a voice activity detector (VAD) generating a VAD output based on acoustic signals received from microphones included in a pair of earbuds and the microphone array included on a headset wire and data output by an accelerometer that is included in the pair of earbuds. A noise suppressor may then receive the acoustic signals from the microphone array and the VAD output and suppress the noise included in the acoustic signals received from the microphone array based on the VAD output. The method may also include steering one or more beamformers based on the VAD output. Other embodiments are also described.
Abstract:
An example method is performed by a media playback system comprising a plurality of audio drivers having a first radiation pattern. The method includes receiving data representing audio content, where each datum of the data indicates (i) a frequency and (ii) an amplitude corresponding to the frequency. The method further includes, for each audio driver of the plurality of audio drivers, determining a transfer function; processing each datum of the data based on (i) the frequency indicated by the given datum and (ii) the determined transfer function; and providing, to the given audio driver, a respective signal representing the data processed for the given audio driver, thereby causing the plurality of audio drivers to play back the audio content according to a second radiation pattern that is different from the first radiation pattern. An example media playback system and an example non-transitory computer-readable medium related to the example method is also disclosed herein.
Abstract:
Disclosed are an apparatus and a method for tracking locations of a plurality of sound sources. According to the apparatus and the method, a task for searching sound source candidates is repeated at respective predetermined frames of microphone signals to collect sound source candidates, and only the collected sound source candidates are verified through beamforming, thereby more rapidly and accurately tracking the plurality of sound sources in spite of using a small number of microphones.
Abstract:
Provided is a sound reproduction device including: speakers; light emitting elements provided to a part of each of the speakers, or in a vicinity of each of the speakers; a detecting section configured to detect a beat of an audio signal reproduced by the speakers, and output a detection signal corresponding to the beat; and a light emission control signal outputting section configured to output a light emission control signal for controlling a light emission mode of the light emitting elements according to the detection signal. The light emission control signal outputting section outputs a first light emission control signal according to the detection signal, and outputs a second light emission control signal when a period in which the beat is not detected exceeds a set period, the second light emission control signal being for controlling the light emitting elements to perform a predetermined light emission mode.
Abstract:
To solve the problems with the prior art that a multi-microphone array cannot inhibit broad-band noises well and cannot be used in the increasingly widespread broad-band communication, embodiments of the present invention disclose a method, a device and a system for eliminating noises with multi-microphone array. The method according to an embodiment of the present invention comprises according to the number of different spacings between each of pairs of microphones of the multi-microphone array, dividing a full frequency band into the same number of sub-bands; decomposing signals of each of the pairs of microphones with the different spacings into a corresponding one of the sub-bands, wherein the larger the spacing between each pair of microphones is, the lower the frequencies of the sub-band into which the signals of the pair of microphones are decomposed will be; adaptively reducing the noises in the decomposed signals of each of the pairs of microphones with the different spacings in the corresponding sub-band to obtain noise-reduced signals for each of the sub-bands; and synthesizing the noise-reduced signals of each of the sub-bands to obtain a signal in which the noises have been reduced with the multi-microphone array in the full frequency band. The embodiments of the present invention can be used in scenarios of hands-free video calls.
Abstract:
A beam-forming device includes a first target sound blocker 103 and a second target sound blocker 104 that remove a target signal having a correlation mutually from a first sound signal x1 and a second sound signal x2 which are converted by first and second microphones 101 and 102, a phase synchronizer 105 that synchronizes the phases of the first sound signal x1 and the second sound signal x2 and synthesizes these sound signals by using information acquired when the first target sound blocker 103 removes the target signal, and a noise learner 106 that learns a noise component included in an output signal of the phase synchronizer 105 from signals from which the target signal is removed by the first target sound blocker 103 and the second target sound blocker 104.
Abstract:
A differential microphone array (DMA) is provided that includes a number (M) of microphone sensors for converting a sound to a number of electrical signals and a processor that is configured to apply linearly-constrained minimum variance filters on the electrical signals over a time window to calculate frequency responses of the electrical signals over a plurality of subbands and sum the frequency responses of the electrical signals for each subband to calculate an estimated frequency spectrum of the sound.
Abstract:
An actuation system for generating a physical effect, the system comprising at least one array of translating elements each constrained to travel alternately back and forth along a respective axis, toward first and second extreme positions respectively, in response to activation of first and second forces respectively; and a controller operative to use the first and second forces to selectably latch at least one subset of said translating elements into the first and second extreme positions respectively.
Abstract:
Mobile device, method and computer program product for processing signals at the mobile device. The signals are received at a plurality of signal sensors of the mobile device. Motion of the mobile device is sensed and the received signals are processed using beamforming means at the mobile device, in dependence upon their direction of arrival at the plurality of signal sensors and in dependence upon the sensed motion of the mobile device.