Abstract:
A WiFi access point (AP) includes a receive radio frequency (RF) front end and a baseband processor that controls operation of the receive RF front end. The RF front end captures signals over a wide spectrum that includes a plurality of WiFi frequency bands (2.4 GHz and 5 GHz) and channelizes one or more WiFi channels from the captured signals. The baseband processor combines a plurality of blocks of WiFi channels to create one or more aggregated WiFi channels. The receive RF front end may be integrated on a first integrated circuit and the baseband processor may be integrated on a second integrated circuit. The first and second integrated circuits may be integrated on a single package. The RF front end and the baseband processor may be integrated on a single integrated circuit. The WiFi access point comprises a routing module that is communicatively coupled to the baseband processor.
Abstract:
A satellite dish assembly may comprise a broadcast receive module and a basestation module. The broadcast receive module may be operable to receive a satellite signal, recover media carried in the satellite signal, and output the media. The basestation module may be operable to accept the media output by the broadcast receive module and transmit the media in accordance with one or more wireless protocols. In being conveyed from the broadcast receive module to the basestation, the media content may not traverse any wide area network connection. The one or more wireless protocols may comprise one or more of: a cellular protocol and IEEE 802.11 protocol. The satellite dish assembly may comprise a routing module that may be operable to route data between the broadcast receive module, the basestation, and a gateway.
Abstract:
Methods and systems are provided for generating correction estimates. Training signals may be injected into one or more particular spectral regions, and one or more correction estimation parameters may be determined based on the injecting of the training signals, where the one or more correction estimation parameters reduce distortion in at least the one or more particular spectral regions. The particular spectral regions may comprise originally-unoccupied spectral regions. The one or more correction estimation parameters may be applied during correcting of digital signals generated based on processing of received analog signals. The training signals may be generated, such as based on one or more pre-defined characteristics. The one or more correction estimation parameters may then be determined based on the one or more pre-defined characteristics of the training signals and/or changes thereto.
Abstract:
A satellite reception assembly that provides satellite television and/or radio service to a customer premises may comprise a wireless interface via which it can communicate with other satellite reception assemblies. Wireless connections between satellite reception assemblies may be utilized for providing satellite content between different satellite customer premises. Wireless connections between satellite reception assemblies may be utilized for offloading traffic from other network connections.
Abstract:
A network device may receive a signal from a headend, wherein a bandwidth of the received signal spans from a low frequency to a high frequency and encompasses a plurality of sub-bands. The network device may determine, based on communication with the headend, whether one of more of the sub-bands residing above a threshold frequency are available for carrying downstream data from the headend to the circuitry. The network device may digitize the signal using an ADC operating at a sampling frequency. The sampling frequency may be configured based on a result of the determining. When the sub-band(s) are available for carrying downstream data from the headend to the network device, the sampling frequency may be set to a relatively high frequency. When the sub-band(s) are not available for carrying downstream data from the headend to the network device, the sampling frequency may be set to a relatively low frequency.
Abstract:
Methods and apparatus for processing multichannel signals in a multichannel receiver are described. In one implementation, a plurality of demodulator circuits may provide a plurality of outputs to a processing module, with the processing module then simultaneously estimating noise characteristics based on the plurality of outputs and generating a common noise estimate based on the plurality of outputs. This common noise estimate may then be provided back the demodulators and used to adjust the demodulation of signals in the plurality of demodulators to improve phase noise performance.
Abstract:
Systems and methods are provided for dynamic calibration of pre-distortion modification in transmitters. The pre-distortion modification may be applied during processing of an input signal for transmission, and feedback data, relating to the transmitter and/or processing performed after application of the pre-distortion modification in the transmitter, may be obtained. Adjustments to the pre-distortion modification may be determined based on the feedback data, and the adjustments to the pre-distortion modification may be applied in loop-back manner, thus enabling adjustment of pre-distortion modification dynamically based on real-time and current data. The pre-distortion modification may comprise modifying one or more signal characteristics, such as phase, frequency, and/or amplitude. Determining and/or applying the adjustments to the pre-distortion modification may be done periodically, based on one or more particular events, or conditionally.
Abstract:
A monolithic integrated circuit for use in a microwave backhaul system may comprise a plurality of microwave transceivers and outdoor-unit to indoor-unit (ODU/IDU) interface circuitry. The monolithic integrated circuit may be configurable into an all-outdoor configuration in which the ODU/IDU interface circuitry is disabled. The monolithic integrated circuit may be configurable into a split-indoor-and-outdoor configuration in which the ODU/IDU interface circuitry is enabled to communicate signals between an outdoor unit of the microwave backhaul system and an indoor unit of the microwave backhaul system. While the monolithic integrated circuit is configured in the split-indoor-and-outdoor configuration, the ODU/IDU interface circuitry may be configurable to operate in at least a non-stacking mode and a stacking mode.
Abstract:
A first server rack configured for housing one or more first servers and for connecting the one or more first servers to a network may comprise a first millimeter wave transceiver circuit at least one phased array antenna, and a lens. The lens and the millimeter wave transceiver circuit may be arranged on the server rack such that millimeter wave signals transmitted by the at least one phased array antenna are focused by the lens to form a first one or more millimeter wave beams at a corresponding one or more determined angles. The first millimeter wave transceiver circuit may be operable to transmit data from the one or more first servers to one or more second servers residing in a second server rack via the first one or more millimeter wave beams.
Abstract:
A first device of a Multimedia Over Coax Alliance (MoCA) network may communicate with a second device of the MoCA network to control power-save operation of the second MoCA device. The first device may control the power-save operation of the second MoCA device based on an amount of data stored in a buffer, wherein the data stored in the buffer is destined for the second device. The buffer may be in a third device which sends the data to the second device, and/or the buffer may be in the first device. The first device may be operable to buffer data destined for the second device while the second device is in a power-saving state.